Virtual Reality—A Supplement to Posturography or a Novel Balance Assessment Tool?
Abstract
:1. Introduction
2. Materials and Methods
Literature Search
3. Results
3.1. Population of Patients
3.2. Virtual Reality Environments
3.3. Posturography Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VR | Virtual reality |
HMD | Head-mounted display |
SP | Static posturography |
COP | Center of pressure |
CDP | Computerized dynamic posturography |
SOT | Sensory organization test |
LOS | Limits of stability |
A-P | Anteroposterior displacement in force-plate posturography |
M-L | Mediolateral displacement in force-plate posturography |
BRU | Balance rehabilitation unit |
BPPV | Benign positional paroxysmal vertigo |
3D | Three-dimensional virtual environment |
2D | Flat, two-dimensional virtual environment |
DOF | Degrees of freedom |
References
- Forbes, P.A.; Chen, A.; Blouin, J.-S. Sensorimotor control of standing balance. Handb. Clin. Neurol. 2018, 159, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensory Integration for Human Balance Control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Saftari, L.N.; Kwon, O.-S. Ageing vision and falls: A review. J. Physiol. Anthr. 2018, 37, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coto, J.; Alvarez, C.L.; Cejas, I.; Colbert, B.M.; Levin, B.E.; Huppert, J.; Rundek, T.; Balaban, C.; Blanton, S.H.; Lee, D.J.; et al. Peripheral vestibular system: Age-related vestibular loss and associated deficits. J. Otol. 2021, 16, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Trisan, R. Balance Problems and Fall Risks in the Elderly. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 727–737. [Google Scholar] [CrossRef]
- Duracinsky, M.; Mosnier, I.; Bouccara, D.; Sterkers, O.; Chassany, O. Literature Review of Questionnaires Assessing Vertigo and Dizziness, and Their Impact on Patients’ Quality of Life. Value Health 2007, 10, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Duracinsky, M.; Mosnier, I.; Bouccara, D.; Sterkers, O.; Chassany, O.; Attal, N.; Bertholon, P.; Bordure, P.; Chays, A.; Dubois, B.; et al. Stocktaking on the development of posturography for clinical use. J. Vestib. Res. 2011, 21, 117–125. [Google Scholar] [CrossRef]
- Wagner, A.R.; Akinsola, O.; Chaudhari, A.M.W.; Bigelow, K.E.; Merfeld, D.M. Measuring Vestibular Contributions to Age-Related Balance Impairment: A Review. Front. Neurol. 2021, 12, 635305. [Google Scholar] [CrossRef]
- Janc, M.; Sliwinska-Kowalska, M.; Jozefowicz-Korczynska, M.; Marciniak, P.; Rosiak, O.; Kotas, R.; Szmytke, Z.; Grodecka, J.; Zamyslowska-Szmytke, E. A comparison of head movements tests in force plate and accelerometer based posturography in patients with balance problems due to vestibular dysfunction. Sci. Rep. 2021, 11, 635305. [Google Scholar] [CrossRef]
- Tylman, W.; Kotas, R.; Kamiński, M.; Marciniak, P.; Woźniak, S.; Napieralski, J.; Sakowicz, B.; Janc, M.; Józefowicz-Korczyńska, M.; Zamysłowska-Szmytke, E. Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test. Sensors 2021, 21, 1338. [Google Scholar] [CrossRef]
- Gawronska, A.; Pajor, A.; Zamyslowska-Szmytke, E.; Rosiak, O.; Jozefowicz-Korczynska, M. Usefulness of Mobile Devices in the Diagnosis and Rehabilitation of Patients with Dizziness and Balance Disorders: A State of the Art Review. Clin. Interv. Aging 2020, 15, 2397–2406. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; E McKenzie, J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Jurkojć, J.; Wodarski, P.; Bieniek, A.; Gzik, M.; Michnik, R. Influence of changing frequency and various sceneries on stabilometric parameters and on the effect of adaptation in an immersive 3D virtual environment. Acta Bioeng. Biomech. 2017, 19, 129–137. [Google Scholar] [PubMed]
- Cesaroni, S.; da Silva, A.M.; Ganança, M.M.; Caovilla, H.H. Postural control at posturography with virtual reality in the intercritical period of vestibular migraine. Braz. J. Otorhinolaryngol. 2021, 87, 35–41. [Google Scholar] [CrossRef]
- Ghiringhelli, R.; Ganança, C.F. Posturografia com estímulos de realidade virtual em adultos jovens sem alterações do equilíbrio corporal. J. Soc. Bras. Fonoaudiol. 2011, 23, 264–270. [Google Scholar] [CrossRef]
- Marchetto, J.; Wright, W.G. The Validity of an Oculus Rift to Assess Postural Changes During Balance Tasks. Hum. Factors J. Hum. Factors Ergon. Soc. 2019, 61, 1340–1352. [Google Scholar] [CrossRef]
- Wittstein, M.W.; Crider, A.; Mastrocola, S.; Gonzalez, M.G. Use of Virtual Reality to Assess Dynamic Posturography and Sensory Organization: Instrument Validation Study. JMIR Serious Games 2020, 8, e19580. [Google Scholar] [CrossRef]
- Gazzola, J.M.; Caovilla, H.H.; Doná, F.; Ganança, M.M.; Ganança, F.F. A quantitative analysis of postural control in elderly patients with vestibular disorders using visual stimulation by virtual reality. Braz. J. Otorhinolaryngol. 2019, 86, 593–601. [Google Scholar] [CrossRef]
- Altın, B.; Aksoy, S. Investigation of the effects of cognitive tasks on balance performance in young adults. Am. J. Otolaryngol. 2020, 41, 102663. [Google Scholar] [CrossRef]
- Macedo, C.; Gazzola, J.M.; Ricci, N.; Doná, F.; Ganança, F.F. Influence of sensory information on static balance in older patients with vestibular disorder. Braz. J. Otorhinolaryngol. 2015, 81, 50–57. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Cherng, R.-J.; Lin, C.-H. Development of a virtual reality environment for somatosensory and perceptual stimulation in the balance assessment of children. Comput. Biol. Med. 2004, 34, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Tossavainen, T.; Juhola, M.; Pyykkö, I.; Toppila, E.; Aalto, H.; Honkavaara, P. Towards Virtual Reality Stimulation in Force Platform Posturography. Stud. Health Technol. Inform. 2001, 84, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Tossavainen, T.; Juhola, M.; Pyykkö, I.; Aalto, H.; Toppila, E. Development of virtual reality stimuli for force platform posturography. Stud. Health Technol. Inform. 2003, 70, 854–857. [Google Scholar] [CrossRef]
- Tossavainen, T.; Toppila, E.; Pyykko, I.; Forsman, P.; Juhola, M.; Starck, J. Virtual reality in posturography. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 282–292. [Google Scholar] [CrossRef]
- Monteiro, S.R.G.; Ganança, M.M.; Ganança, F.F.; Ganança, C.F.; Caovilla, H.H. Posturografia do Balance Rehabilitation Unit (BRUTM) Posturography in Benign Paroxysmal Positional Vertigo. Braz. J. Otorhinolaryngol. 2012, 78, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Kessler, N.; Ganança, M.M.; Ganança, C.F.; Ganança, F.F.; Lopes, S.C.; Serra, A.P.; Caovilla, H.H. Balance Rehabilitation Unit (BRUTM) Posturography in Relapsing-Remitting Multiple Sclerosis. Arq. Neuropsiquiatr. 2011, 69, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Cusin, F.S.; Ganança, M.M.; Ganança, F.F.; Ganança, C.F.; Caovilla, H.H. Posturografia do Balance Rehabilitation Unit (BRU TM) na doença de Ménière. Braz. J. Otorhinolaryngol. 2010, 76, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Duque, G.; Boersma, D.; Loza-Diaz, G.; Hassan, S.; Suarez, H.; Geisinger, D.; Suriyaarachchi, P.; Sharma, A.; Demontiero, O. Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 2013, 8, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Alahmari, K.A.; Marchetti, G.F.; Sparto, P.J.; Furman, J.M.; Whitney, S.L. Estimating Postural Control With the Balance Rehabilitation Unit: Measurement Consistency, Accuracy, Validity, and Comparison with Dynamic Posturography. Arch. Phys. Med. Rehabil. 2014, 95, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Kasse, C.A.; Santana, G.G.; Scharlach, R.C.; Gazzola, J.M.; Branco, F.C.B.; Doná, F. Resultados do Balance Rehabilitation Unit na Vertigem Posicional Paroxística Benigna. Braz. J. Otorhinolaryngol. 2010, 76, 623–629. [Google Scholar] [CrossRef]
- Lança, S.M.; Gazzola, J.M.; Kasse, C.A.; Branco-Barreiro, F.; Vaz, D.P.; Scharlach, R.C. Body Balance in Elderly Patients, 12 Months after Treatment for BPPV. Braz. J. Otorhinolaryngol. 2013, 79, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Suárez, H.; Suárez, A.; Lavinsky, L. Postural adaptation in elderly patients with instability and risk of falling after balance training using a virtual-reality system. Int. Tinnitus J. 2006, 12, 41–44. [Google Scholar] [PubMed]
- Rajguru, C.; Obrist, M.; Memoli, G. Spatial Soundscapes and Virtual Worlds: Challenges and Opportunities. Front. Psychol. 2020, 11, 569056. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.C.; Ellermeier, W. Audio in VR: Effects of a Soundscape and Movement-Triggered Step Sounds on Presence. Front. Robot. AI 2020, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshpande, A.K.; Bhatt, I.; Rojanaworarit, C. Virtual reality for tinnitus management: A randomized controlled trial. Int. J. Audiol. 2021, 61, 868–875. [Google Scholar] [CrossRef]
- Rosiak, O.; Gawronska, A.; Janc, M.; Marciniak, P.; Kotas, R.; Zamyslowska-Szmytke, E.; Jozefowicz-Korczynska, M. Utility of the Novel MediPost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder. Sensors 2022, 22, 2208. [Google Scholar] [CrossRef] [PubMed]
- Oculus Device Specifications|Oculus Developers. Available online: https://developer.oculus.com/resources/oculus-device-specs/ (accessed on 6 August 2022).
- Lin, J.-W.; Duh, H.; Parker, D.; Abi-Rached, H.; Furness, T. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings of the IEEE Virtual Reality, Orlando, FL, USA, 24–28 March 2003; pp. 164–171. [Google Scholar] [CrossRef]
- van Emmerik, M.L.; de Vries, S.C.; Bos, J.E. Internal and external fields of view affect cybersickness. Displays 2011, 32, 169–174. [Google Scholar] [CrossRef]
- Dużmańska, N.; Strojny, P.; Strojny, A. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Front. Psychol. 2018, 9, 2132. [Google Scholar] [CrossRef]
- Hall, C.D.; Herdman, S.J.; Whitney, S.L.; Anson, E.R.; Carender, W.J.; Hoppes, C.W.; Cass, S.P.; Christy, J.B.; Cohen, H.S.; Fife, T.D.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline From the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J. Neurol. Phys. Ther. 2021, 46, 118–177. [Google Scholar] [CrossRef] [PubMed]
Study Authors | Study Size | Study Groups | Study Type | Measure | VR Device | VR Environment | Source of Postural Data |
---|---|---|---|---|---|---|---|
Jurkojć et al., 2017 [13] | 23 | 1. Healthy volunteers | Exploratory | COP velocity COP sway area | Oculus Rift | Complex 3D scenery | Force plate |
Cesaroni et al., 2019 [14] | 2630 | 1. Healthy volunteers 2. Vestibular migraine | Cross-sectional | COP sway area COP velocity LOS | BRU VR | Optokinetic | Force plate |
Ghiringhelli et al., 2011 [15] | 50 | 1. Healthy volunteers | Exploratory | COP velocity COP sway area LOS | BRU VR | Optokinetic | Force plate |
Marchetto et al., 2019 [16] | 10 | 1. Healthy volunteers | Exploratory | COP velocity COP sway area Head angular velocity | Oculus Rift | Complex 3D scenery | 1. Force plate 2. HMD |
Wittstein et al., 2020 [17] | 20 | 1. Healthy volunteers | Exploratory | COP velocity COP sway area A-P; M-L; SOT VR SOT | HTC VIVE | Complex 3D scenery | Force plate |
Gazzola et al. 2019 [18] | 76 | 1. Healthy volunteers 2. Vestibular disorder (unspecified) | Cross-sectional | COP velocity COP sway area LOS | BRU VR | Optokinetic | Force plate |
Altin et al., 2020 [19] | 30 | 1. Healthy volunteers | Exploratory | SOT Adaptation Test (ADT) | Oculus Rift | Complex 3D scenery | Force-plate |
Macedo et al., 2014 [20] | 123 | Older people with chronic vestibular dysfunction | Cross-sectional | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Lee et al., 2004 [21] | 30 | 1. Healthy volunteers (children) | Exploratory | COP sway area, direction | i-glasses SVGA | Complex 2D scenery | Force plate |
Tossavainen et al. 2001 [22] | 30 | 1. Healthy volunteers | Exploratory | COP length | Virtual Research V8 | Optokinetic | Force plate |
Tossavainen et al., 2003 [23] | 22 | 1. Healthy volunteers | Exploratory | COP velocity | Virtual Research V8 | Optokinetic | Force plate |
Tossavainen et al., 2006 [24] | 110 | 1. Healthy volunteers 2. Meniere’s disease | Cross-sectional | Vertical force power fraction (VFPF) COP velocity | Virtual Research V8 | Optokinetic | Force plate |
Monteiro et al., 2012 [25] | 90 | 1. Healthy volunteers 2. BPPV | Cross-sectional | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Kessler et al., 2011 [26] | 104 | 1. Healthy volunteers 2. Multiple sclerosis | Cross-sectional | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Cusin et al., 2010 [27] | 70 | 1. Healthy volunteers 2. Meniere’s disease | Cross-sectional | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Duque et al., 2013 [28] | 90 | Older people with a history of falls | Experimental | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Alahmari et al., 2014 [29] | 90 | 1. Healthy volunteers 2. Vestibular disorder | Cross-sectional | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Kasse et al., 2010 [30] | 20 | 1. BPPV | Experimental | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Lanca et al., 2013 [31] | 23 | 1. BPPV | Experimental | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Kasse et al., 2010 [30] | 66 | 1. BPPV 2. Healthy volunteers | Experimental | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Suarez et al., 2006 [32] | 26 | Older people with a history of falls | Experimental | COP sway area COP velocity | BRU VR | Optokinetic | Force plate |
Model Name | Oculus Rift | HTC VIVE | i-Glasses SVGA | Balance Rehabilitation Unit (BRU) | Virtual Research V8 |
---|---|---|---|---|---|
Manufacturer | Meta, (previously Oculus VR), USA | HTC, Taiwan | Mindflux, USA | Interacoustics | Virtual Research Systems, USA |
Resolution per eye | 1080 × 1200 pixels | 1080 × 1200 pixels | 800 × 600 | Data unavailable | 640 × 480 pixels |
Refresh rate | 90 Hz | 90 Hz | 60–100 Hz | Data unavailable | 60 Hz |
Field of view | 87° horizontal 88° vertical | 108° horizontal 97° vertical | 26° diagonal | Data unavailable | 60° diagonal |
Weight | 470 g | 470 g | 200 g | Data unavailable | 1000 g |
Tracking system | 6 DOF built-in | 6 DOF marker-based | Optional head-worn tracker | Not implemented | Not implemented |
Announced | 6 May 2015 | 1 March 2015 | 2004 | 2010 | 1998 |
Cost at introduction | 599 USD | 799 USD | Data unavailable | Data unavailable | Data unavailable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosiak, O.; Puzio, A.; Kaminska, D.; Zwolinski, G.; Jozefowicz-Korczynska, M. Virtual Reality—A Supplement to Posturography or a Novel Balance Assessment Tool? Sensors 2022, 22, 7904. https://doi.org/10.3390/s22207904
Rosiak O, Puzio A, Kaminska D, Zwolinski G, Jozefowicz-Korczynska M. Virtual Reality—A Supplement to Posturography or a Novel Balance Assessment Tool? Sensors. 2022; 22(20):7904. https://doi.org/10.3390/s22207904
Chicago/Turabian StyleRosiak, Oskar, Anna Puzio, Dorota Kaminska, Grzegorz Zwolinski, and Magdalena Jozefowicz-Korczynska. 2022. "Virtual Reality—A Supplement to Posturography or a Novel Balance Assessment Tool?" Sensors 22, no. 20: 7904. https://doi.org/10.3390/s22207904
APA StyleRosiak, O., Puzio, A., Kaminska, D., Zwolinski, G., & Jozefowicz-Korczynska, M. (2022). Virtual Reality—A Supplement to Posturography or a Novel Balance Assessment Tool? Sensors, 22(20), 7904. https://doi.org/10.3390/s22207904