On the Applications of EMG Sensors and Signals
1. Introduction
2. Overview of Contribution
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mereu, F.; Leone, F.; Gentile, C.; Cordella, F.; Gruppioni, E.; Zollo, L. Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review. Sensors 2021, 21, 1953. [Google Scholar] [CrossRef]
- Jarque-Bou, N.J.; Sancho-Bru, J.L.; Vergara, M. A Systematic Review of EMG Applications for the Characterisation of Forearm and Hand Muscle Activity during Activities of Daily Living: Results, Challenges, and Open Issues. Sensors 2021, 21, 3035. [Google Scholar] [CrossRef]
- Ye-Lin, Y.; Prats-Boluda, G.; Galiano-Botella, M.; Roldan-Vasco, S.; Orozco-Duque, A.; Garcia-Casado, J. Directed Functional Coordination Analysis of Swallowing Muscles in Healthy and Dysphagic Subjects by Surface Electromyography. Sensors 2022, 22, 4513. [Google Scholar] [CrossRef] [PubMed]
- Malvuccio, C.; Kamavuako, E.N. The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume. Sensors 2022, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Amezquita-Garcia, J.; Bravo-Zanoguera, M.; Gonzalez-Navarro, F.F.; Lopez-Avitia, R.; Reyna, M.A. Applying Machine Learning to Finger Movements Using Electromyography and Visualization in Opensim. Sensors 2022, 22, 3737. [Google Scholar] [CrossRef] [PubMed]
- Hagengruber, A.; Leipscher, U.; Eskofier, B.M.; Vogel, J. A New Labeling Approach for Proportional Electromyographic Control. Sensors 2022, 22, 1368. [Google Scholar] [CrossRef]
- Kim, J.; Koo, B.; Nam, Y.; Kim, Y. sEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and Posture Groups. Sensors 2021, 21, 7681. [Google Scholar] [CrossRef]
- Kamavuako, E.N.; Brown, M.; Bao, X.; Chihi, I.; Pitou, S.; Howard, M. Affordable Embroidered EMG Electrodes for Myoelectric Control of Prostheses: A Pilot Study. Sensors 2021, 21, 5245. [Google Scholar] [CrossRef]
- Noor, A.; Waris, A.; Gilani, S.O.; Kashif, A.S.; Jochumsen, M.; Iqbal, J.; Niazi, I.K. Decoding of Ankle Joint Movements in Stroke Patients Using Surface Electromyography. Sensors 2021, 21, 1575. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Stegall, P.; Edwards, H.; Stirling, L.; Siu, H.C. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running. Sensors 2021, 21, 194. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Dyson, M.; Nazarpour, K. Arduino-Based Myoelectric Control: Towards Longitudinal Study of Prosthesis Use. Sensors 2021, 21, 763. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Yokoyama, H.; Sasaki, A.; Kato, T.; Nakazawa, K. Flexible Recruitments of Fundamental Muscle Synergies in the Trunk and Lower Limbs for Highly Variable Movements and Postures. Sensors 2021, 21, 6186. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, C.; Xu, J.; Ye, S.; Zhou, H.; Zuo, G. A Novel Muscle Synergy Extraction Method Used for Motor Function Evaluation of Stroke Patients: A Pilot Study. Sensors 2021, 21, 3833. [Google Scholar] [CrossRef] [PubMed]
- Benito-de-Pedro, M.; Calvo-Lobo, C.; López-López, D.; Benito-de-Pedro, A.I.; Romero-Morales, C.; San-Antolín, M.; Vicente-Campos, D.; Rodríguez-Sanz, D. Electromyographic Assessment of the Efficacy of Deep Dry Needling versus the Ischemic Compression Technique in Gastrocnemius of Medium-Distance Triathletes. Sensors 2021, 21, 2906. [Google Scholar] [CrossRef] [PubMed]
- Lozano-García, M.; Estrada-Petrocelli, L.; Torres, A.; Rafferty, G.F.; Moxham, J.; Jolley, C.J.; Jané, R. Noninvasive Assessment of Neuromechanical Coupling and Mechanical Efficiency of Parasternal Intercostal Muscle during Inspiratory Threshold Loading. Sensors 2021, 21, 1781. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.E.; Djurdjanovic, D.; Deshpande, A.D. Using a System-Based Monitoring Paradigm to Assess Fatigue during Submaximal Static Exercise of the Elbow Extensor Muscles. Sensors 2021, 21, 1024. [Google Scholar] [CrossRef] [PubMed]
- Schabron, B.; Desai, J.; Yihun, Y. Wheelchair-Mounted Upper Limb Robotic Exoskeleton with Adaptive Controller for Activities of Daily Living. Sensors 2021, 21, 5738. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Suga, S.; Nacpil, E.J.C.; Yang, B.; Nakano, K. Effect of Fixed and sEMG-Based Adaptive Shared Steering Control on Distracted Driver Behavior. Sensors 2021, 21, 7691. [Google Scholar] [CrossRef] [PubMed]
- Sushkova, O.S.; Morozov, A.A.; Gabova, A.V.; Karabanov, A.V.; Illarioshkin, S.N. A Statistical Method for Exploratory Data Analysis Based on 2D and 3D Area under Curve Diagrams: Parkinson’s Disease Investigation. Sensors 2021, 21, 4700. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamavuako, E.N. On the Applications of EMG Sensors and Signals. Sensors 2022, 22, 7966. https://doi.org/10.3390/s22207966
Kamavuako EN. On the Applications of EMG Sensors and Signals. Sensors. 2022; 22(20):7966. https://doi.org/10.3390/s22207966
Chicago/Turabian StyleKamavuako, Ernest N. 2022. "On the Applications of EMG Sensors and Signals" Sensors 22, no. 20: 7966. https://doi.org/10.3390/s22207966
APA StyleKamavuako, E. N. (2022). On the Applications of EMG Sensors and Signals. Sensors, 22(20), 7966. https://doi.org/10.3390/s22207966