Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications
Abstract
:1. Introduction
2. Antenna Design Methodology
2.1. Antenna Design Stages
2.2. Parameteric Analysis
2.3. Antenna Geometry
2.4. Surface Current Distribution
2.5. Bending Analysis of the Proposed Antenna
2.5.1. Bending along X-Axis
2.5.2. Bending along Y-Axis
3. Experimental Results and Discussions
3.1. Measurement Setup
3.2. Radiation Pattern
3.3. Gain and Radiation Efficiency
4. Simulation Results of Tri-Band Antenna on Human Body
Specific Absorption Rate (SAR)
5. State-of-the-Art Works Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faouri, Y.S.; Ahmad, S.; Parchin, N.O.; See, C.H.; Abd-Alhameed, R. A Novel Meander Bowtie-Shaped Antenna with Multi-Resonant and Rejection Bands for Modern 5G Communications. Electronics 2022, 11, 821. [Google Scholar] [CrossRef]
- Elkorany, A.S.; Mousa, A.N.; Ahmad, S.; Saleeb, D.A.; Ghaffar, A.; Soruri, M.; Dalarsson, M.; Alibakhshikenari, M.; Limiti, E. Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors 2022, 22, 667. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Ghaffar, A.; Hussain, N.; Kim, N. Compact Dual-Band Antenna with Paired L-Shape Slots for On- and Off-Body Wireless Communication. Sensors 2021, 21, 7953. [Google Scholar] [CrossRef] [PubMed]
- Al-Gburi, A.J.A.; Zakaria, Z.; Alsariera, H.; Akbar, M.F.; Ibrahim, I.M.; Ahmad, K.S.; Ahmad, S.; Al-Bawri, S.S. Broadband Circular Polarised Printed Antennas for Indoor Wireless Communication Systems: A Comprehensive Review. Micromachines 2022, 13, 1048. [Google Scholar] [CrossRef] [PubMed]
- Sana, M.; Ahmad, S.; Abrar, F.; Qasim, M.A. Millimeter-Wave Quad-Band Dielectric Resonator Antenna for 5G Applications. In Proceedings of the IEEE EUROCON 2021—19th International Conference on Smart Technologies, Lviv, Ukraine, 6–8 July 2021; pp. 304–307. [Google Scholar] [CrossRef]
- Lamri, I.E.; Ahmad, S.; Ali, E.M.A.R.; Belattar, M.; Dalarsson, M.; Alibakhshikenari, M. Four-Elements Proximity Coupled MIMO Antenna for mm-wave 5G Applications. In Proceedings of the 2022 International Workshop on Antenna Technology (iWAT), Dublin, Ireland, 16–18 May 2022; pp. 188–191. [Google Scholar] [CrossRef]
- Mingle, S.; Ahmad, S.; Hassoun, I.; Liaqat, M. Enhancing Frequency-Scanning Leaky-Wave Antenna Design Base-metamaterial for Millimeter-wave application. In Proceedings of the 2021 1st International Conference on Microwave, Antennas & Circuits (ICMAC), Islamabad, Pakistan, 27 July–31 August 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghaffar, A.; Li, X.J.; Cherif, N. A Millimetre-Wave Tri-Band Antenna Embedded on Smart Watch for Wearable Applications. In Proceedings of the 2021 International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 19–22 October 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chiu, T.; Chang, D.-C. Design of V-Band Wide-Beamwidth Circularly Polarized Wire-Bond Antenna. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 8, 261–268. [Google Scholar] [CrossRef]
- Wu, J.; Na Huang, W.; Cheng, Y.J.; Fan, Y. A broadband high-gain planar array antenna for V-band wireless communication. In Proceedings of the 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014; pp. 309–312. [Google Scholar]
- Kornprobst, J.; Wang, K.; Hamberger, G.; Eibert, T.F. A mm-Wave Patch Antenna with Broad Bandwidth and a Wide Angular Range. IEEE Trans. Antennas Propag. 2017, 65, 4293–4298. [Google Scholar] [CrossRef]
- Firdausi, A.; Hakim, G.; Alaydrus, M. Designing a tri-band microstrip antenna for targetting 5g broadband communications. MATEC Web Conf. EDP Sci. 2018, 218, 03015. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.S.; Islam, M.J.; Uddin, M.J.; Imran, A.Z.M. Design of a tri-band microstrip patch antenna for 5G application. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018; pp. 1–3. [Google Scholar]
- Amrutha, G.M.; Sudha, T. Triple Band Antenna for 5G Applications. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 1650–1652. [Google Scholar]
- Hasan, N.; Bashir, S.; Chu, S. Dual band omnidirectional millimeter wave antenna for 5G communications. J. Electromagn. Waves Appl. 2019, 33, 1581–1590. [Google Scholar] [CrossRef]
- Marzouk, H.M.; Ahmed, M.I.; Shaalan, A.H.A. Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications. Prog. Electromag. Res. 2019, 93, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Suneel, E.; Rao, B.P. CPW-fed Compact Antenna for WiMAX/WLAN Applications. Int. J. Wirel. Microw. Technol. (IJWMT) 2019, 9, 11–24. [Google Scholar] [CrossRef]
- Khan, Z.; Memon, M.H.; Rahman, S.U.; Sajjad, M.; Lin, F.; Sun, L. A Single-Fed Multiband Antenna for WLAN and 5G Applications. Sensors 2020, 20, 6332. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.U.; Esselle, K.P.; Lalbakhsh, A. A Methodology to Design a Low-Profile Composite-Dielectric Phase-Correcting Structure. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1223–1227. [Google Scholar] [CrossRef]
- Shahzad, M.A.; Paracha, K.N.; Naseer, S.; Ahmad, S.; Malik, M.; Farhan, M.; Ghaffar, A.; Hussien, M.; Sharif, A.B. An Artificial Magnetic Conductor-Backed Compact Wearable Antenna for Smart Watch IoT Applications. Electronics 2021, 10, 2908. [Google Scholar] [CrossRef]
- Ahmad, S.; Ijaz, U.; Naseer, S.; Ghaffar, A.; Qasim, M.A.; Abrar, F.; Parchin, N.O.; See, C.H.; Abd-Alhameed, R. A Jug-Shaped CPW-Fed Ultra-Wideband Printed Monopole Antenna for Wireless Communications Networks. Appl. Sci. 2022, 12, 821. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Lalbakhsh, A.; Simorangkir, R.B.V.B.; Rezaee, A.; Hashmi, R.M. Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures. Prog. Electromagn. Res. 2020, 89, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Mazher, A.; Chaudary, E.; Hussain, B.; Alibakhshikenari, M.; Falcone, F.; Limiti, E. Compact Dual-Band Antenna with High Gain and Simple Geometry for 5G Cellular Communication Operating at 28 GHz and 44 GHz. In Proceedings of the 34th General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021; pp. 1–4. [Google Scholar]
- Altaf, A.; Iqbal, A.; Smida, A.; Smida, J.; Althuwayb, A.; Kiani, S.H.; Alibakhshikenari, M.; Falcone, F.; Limiti, E. Isolation Improvement in UWB-MIMO Antenna System Using Slotted Stub. Electronics 2020, 9, 1582. [Google Scholar] [CrossRef]
- Withwave. Available online: www.withwave209.cafe24.com (accessed on 15 August 2021).
Parameters | Values (mm) | Parameters | Values (mm) |
---|---|---|---|
Ls | 4.0 | Ws | 3.0 |
Lg | 1.45 | wg | 1.34 |
Lf | 1.5 | wf | 0.26 |
L1 | 0.56 | w1 | 1.4 |
L2 | 0.4 | w2 | 1.0 |
L3 | 0.52 | w3 | 0.96 |
L4 | 0.72 | w4 | 0.65 |
L5 | 0.55 | w5 | 0.64 |
g1 | 0.19 | w6 | 0.68 |
g2 | 0.15 | w7 | 1.0 |
g | 0.03 | hs | 0.25 |
s | 0.18 |
Ref. No. | Antenna Size (mm3) | Bandwidth (GHz) | No. of Bands | Operating Frequency (GHz) | Peak Gain (dB) |
---|---|---|---|---|---|
[13] | 10 × 5 × 0.51 | 3, 5, 3 | Tri-band | 45, 57, 66 | 5.6 |
[14] | 4 × 5 × 0.2 | 0.5, 0.9, 0.4 | Tri-band | 24.4, 28, 38 | 6.5, 7, 5 |
[15] | 8 × 8 × 1.6 | 2.5, 1.6, 7 | Tri-band | 26, 35, 54 | 5.8, 4.5, 6 |
[16] | 14 × 12 × 0.38 | 2.6, 2.1 | Dual band | 28, 38 | 1.27, 1.83 |
[17] | 55 × 110 × 0.05 | 0.8, 1.5 | Dual band | 28, 38 | 7.9, 8.2 |
[18] | 20 × 20 × 1.95 | 4.8, 3.6 | Dual band | 28, 38 | 5.7, 7.2 |
[19] | 8 × 8 × 0.79 | 2.3, 5.1, 15 | Tri-band | 28, 38, 55 | 6.6, 7, 7.35 |
[This work] | 4 × 3 × 0.25 | 10, 1.5, 6 | Tri-band | 28, 38, 60 | 5.29, 7.49, 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.; Boubakar, H.; Naseer, S.; Alim, M.E.; Sheikh, Y.A.; Ghaffar, A.; Al-Gburi, A.J.A.; Parchin, N.O. Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications. Sensors 2022, 22, 8012. https://doi.org/10.3390/s22208012
Ahmad S, Boubakar H, Naseer S, Alim ME, Sheikh YA, Ghaffar A, Al-Gburi AJA, Parchin NO. Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications. Sensors. 2022; 22(20):8012. https://doi.org/10.3390/s22208012
Chicago/Turabian StyleAhmad, Sarosh, Hichem Boubakar, Salman Naseer, Mohammad Ehsanul Alim, Yawar Ali Sheikh, Adnan Ghaffar, Ahmed Jamal Abdullah Al-Gburi, and Naser Ojaroudi Parchin. 2022. "Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications" Sensors 22, no. 20: 8012. https://doi.org/10.3390/s22208012
APA StyleAhmad, S., Boubakar, H., Naseer, S., Alim, M. E., Sheikh, Y. A., Ghaffar, A., Al-Gburi, A. J. A., & Parchin, N. O. (2022). Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications. Sensors, 22(20), 8012. https://doi.org/10.3390/s22208012