Interleaved Honeypot-Framing Model with Secure MAC Policies for Wireless Sensor Networks
Abstract
:1. Introduction
- On-Demand Acyclic Network Connectivity model (ODAC);
- Interleaved Honeypot-Framing Traps;
- Distributed Neighbor-based Honeypot Engines;
- Secure Hashing with Random Interleaving procedures;
- Confidential and Authenticated Channel Protection.
2. Materials and Methods
2.1. Related Works
2.2. WIHFM
2.2.1. WSN Model
2.2.2. Wireless Interleaved Honeypots
Algorithm 1. Procedure A. Procedure (A): |
Input: Output: 1. Get node MAC address (48 bits), 2. Set random seed matrix 3. Computer, ; ; 4. Call the SHA-3 (512 Bits) function and do 5. Start binary bit string computation, ; 6. Redo for all . 7. Construct binary matrix, 8. Generate random slot bits, 9. Store in iteratively 10. Recall the steps from 1 to 10. |
End of Procedure (A) |
Algorithm 2. Procedure B. Procedure (B): |
Input:
Output: Interleaved Honeypot Frames On Channel 1. Set to data transmission mode 2. Get the stream of from Procedure B 3. Set Interleaved Honeypot Frame (IHF) queue at sender 4. Do for each transmission, at sender 5. Set Deinterleaver Honeypot Frame (DHF) queue at receiver 6. Do for each reception, at receiver 7. Do for all active channels, 8. Call Procedure (A) for each at 9. Set the number of as ; |
End of Procedure (B) |
Algorithm 3. Procedure C. Procedure (C): |
Input: Attacker access
Output: Attacker logs and report 1. Do for all attacker access over MAC frame sequence, Go to step 2. Go to step 3. 2. Call HBC and IVB functions (Procedure (D)) Create an alert to all neighbours, Make an entry in the attacker’s record, 3. Continue and 4. Do for all active channels, 5. Call procedure (A) and procedure (B) for activating each at |
End of Procedure (C) |
Algorithm 4. Procedure D. Procedure (D): |
Input:
Output: Suspicious events detection 1. From Procedure C (step 2) 2. Set node’s internal intrusion dataset 3. Get at node ; sender or forwarding node 4. Call at Call IDS rule engine functions Start ; , Table 1. Validate Validate Validate 5. Start rule-based classification function, 6. Set event classifier logs for each node 7. Update the logs for each session 8. Redo for all channels |
End of Procedure (D) |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Snapshots Provided Based on the Reviewer Responses
References
- Lloret, J.; Garcia, M.; Bri, D.; Sendra, S. A wireless sensor network deployment for rural and forest fire detection and verification. Sensors 2009, 9, 8722–8747. [Google Scholar] [CrossRef] [PubMed]
- Mezrag, F.; Bitam, S.; Mellouk, A. An efficient and lightweight identity-based scheme for secure communication in clustered wireless sensor networks. J. Netw. Comput. Appl. 2022, 200, 103282. [Google Scholar] [CrossRef]
- Guimaraes, G.; Souto, E.; Sadok, D.; Kelner, J. Evaluation of security mechanisms in wireless sensor networks. In Proceedings of the 2005 Systems Communications (ICW’05, ICHSN’05, ICMCS’05, SENET’05), Montreal, QC, Canada, 14–17 August 2005; pp. 428–433. [Google Scholar]
- Sharma, K.; Ghose, M.K.; Kumar, D.; Singh, R.K.; Pandey, V.K. A comparative study of various security approaches used in wireless sensor networks. Int. J. Adv. Sci. Technol. 2010, 17, 31–44. [Google Scholar]
- Bhushan, B.; Sahoo, G. Requirements, protocols, and security challenges in wireless sensor networks: An industrial perspective. In Handbook of Computer Networks and Cyber Security; Springer: Cham, Switzerland, 2020; pp. 683–713. [Google Scholar]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C. Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef]
- Han, Y.; Hu, H.; Guo, Y. Energy-Aware and Trust-Based Secure Routing Protocol for Wireless Sensor Networks Using Adaptive Genetic Algorithm. IEEE Access 2022, 10, 11538–11550. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, S.; Wang, J. Security and application of wireless sensor network. Procedia Comput. Sci. 2021, 183, 486–492. [Google Scholar]
- Keerthika, M.; Shanmugapriya, D. Wireless Sensor Networks: Active and Passive Attacks-Vulnerabilities and Countermeasures. Glob. Transit. Proc. 2021, 2, 362–367. [Google Scholar] [CrossRef]
- Salau, A.O.; Marriwala, N.; Athaee, M. Data security in wireless sensor networks: Attacks and countermeasures. In Mobile Radio Communications and 5G Networks; Springer: Singapore, 2021; pp. 173–186. [Google Scholar]
- Almesaeed, R.; Al-Salem, E. Sybil attack detection scheme based on channel profile and power regulations in wireless sensor networks. Wirel. Netw. 2022, 28, 1361–1374. [Google Scholar] [CrossRef]
- Panahi, U.; Bayılmış, C. Enabling secure data transmission for wireless sensor networks based IoT applications. Ain Shams Eng. J. 2022, 13, 101866. [Google Scholar] [CrossRef]
- Wang, H.; He, H.; Zhang, W.; Liu, W.; Liu, P.; Javadpour, A. Using honeypots to model botnet attacks on the internet of medical things. Comput. Electr. Eng. 2022, 102, 108212. [Google Scholar] [CrossRef]
- Lygerou, I.; Srinivasa, S.; Vasilomanolakis, E.; Stergiopoulos, G.; Gritzalis, D. A decentralized honeypot for IoT Protocols based on Android devices. Int. J. Inf. Secur. 2022, 21, 1211–1222. [Google Scholar] [CrossRef]
- Veluchamy, S.; Kathavarayan, R.S. Deep reinforcement learning for building honeypots against runtime DoS attack. Int. J. Intell. Syst. 2022, 37, 3981–4007. [Google Scholar] [CrossRef]
- Acosta, J.C.; Basak, A.; Kiekintveld, C.; Kamhoua, C. Lightweight On-demand Honeypot Deployment for Cyber Deception. In Proceedings of the International Conference on Digital Forensics and Cyber Crime, Boston, MA, USA, 16–18 November 2022; Springer: Cham, Switzerland, 2022; pp. 294–312. [Google Scholar]
- Pashaei, A.; Akbari, M.E.; Lighvan, M.Z.; Charmin, A. Early Intrusion Detection System using honeypot for industrial control networks. Results Eng. 2022, 6, 100576. [Google Scholar] [CrossRef]
- Di Pietro, R.; Mancini, L.V.; Soriente, C.; Spognardi, A.; Tsudik, G. Data security in unattended wireless sensor networks. IEEE Trans. Comput. 2009, 58, 1500–1511. [Google Scholar] [CrossRef]
- Yang, H.; Ye, F.; Yuan, Y.; Lu, S.; Arbaugh, W. Toward resilient security in wireless sensor networks. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, Urbana-Champaign, IL, USA, 25–27 May 2005; pp. 34–45. [Google Scholar]
- Khan, I.U.; Qureshi, I.M.; Aziz, M.A.; Cheema, T.A.; Shah, S.B. Smart IoT control-based nature inspired energy efficient routing protocol for flying ad hoc network (FANET). IEEE Access 2020, 8, 56371–56378. [Google Scholar] [CrossRef]
- Singh, I.; Lee, S.W. Self-adaptive and secure mechanism for IoT based multimedia services: A survey. Multimed. Tools Appl. 2022, 81, 26685–26720. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S.; Goyal, D. Wireless Sensor Network in IoT and Performance Optimization. Recent Adv. Comput. Sci. Commun. 2022, 15, 14–22. [Google Scholar] [CrossRef]
- Bharany, S.; Sharma, S. Intelligent Green Internet of Things: An Investigation. In Machine Learning, Blockchain, and Cyber Security in Smart Environments; Chapman and Hall: London, UK; CRC: Boca Raton, FL, USA, 2022; pp. 1–15. [Google Scholar]
- Xiao, Y.; Chen, H.H.; Sun, B.; Wang, R.; Sethi, S. MAC security and security overhead analysis in the IEEE 802.15. 4 wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2006, 2006, 093830. [Google Scholar] [CrossRef] [Green Version]
- Boyle, D.; Newe, T. Securing Wireless Sensor Networks: Security Architectures. J. Net. 2008, 3, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Karlof, C.; Sastry, N.; Wagner, D. TinySec: A link layer security architecture for wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5 November 2004; pp. 162–175. [Google Scholar]
- Yadav, R.; Varma, S.; Malaviya, N. A survey of MAC protocols for wireless sensor networks. UbiCC J. 2009, 4, 827–833. [Google Scholar]
- Singh, V.; Sharma, G.; Poonia, R.C.; Trivedi, N.K.; Raja, L. Source redundancy management and host intrusion detection in wireless sensor networks. Recent Adv. Comput. Sci. Commun. 2021, 14, 43–47. [Google Scholar] [CrossRef]
- Sachan, S.; Sharma, R.; Sehgal, A. Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks. Sustain. Comput. Inform. Syst. 2021, 30, 100504. [Google Scholar] [CrossRef]
- Elshrkawey, M.; Al-Mahdi, H. Sda-sm: An efficient secure data aggregation scheme using separate mac across wireless sensor networks. Int. J. Comput. Commun. Control 2021, 16, 1–18. [Google Scholar] [CrossRef]
- Kumar, M.J.; Kumar, G.R.; Krishna, P.S.; Sai, N.R. Secure and efficient data transmission for wireless sensor networks by using optimized leach protocol. In Proceedings of the 2020 6th International Conference on Inventive Computation Technologies (ICICT), R.V.S. Technical Campus, Coimbatore, India, 20–22 January 2021; pp. 50–55. [Google Scholar]
- Khashan, O.A.; Ahmad, R.; Khafajah, N.M. An automated lightweight encryption scheme for secure and energy-efficient communication in wireless sensor networks. Ad Hoc Netw. 2021, 115, 102448. [Google Scholar] [CrossRef]
- Almansoori, M.N.; Elshamy, A.A.; Mustafa, A.A. Secure Z-MAC Protocol as a Proposed Solution for Improving Security in WSNs. Information 2022, 13, 105. [Google Scholar] [CrossRef]
- Awan, S.; Javaid, N.; Ullah, S.; Khan, A.U.; Qamar, A.M.; Choi, J.G. Blockchain-Based Secure Routing and Trust Management in Wireless Sensor Networks. Sensors 2022, 22, 411. [Google Scholar] [CrossRef]
- Meena, U.; Sharma, P. Secret Dynamic Key Authentication and Decision Trust Secure Routing Framework for Internet of Things Based WSN. Wirel. Pers. Commun. 2022, 125, 1753–1781. [Google Scholar] [CrossRef]
- Islam, M.N.; Fahmin, A.; Hossain, M.; Atiquzzaman, M. Denial-of-service attacks on wireless sensor network and defense techniques. Wirel. Pers. Commun. 2021, 116, 1993–2021. [Google Scholar] [CrossRef]
- Ojha, R.P.; Srivastava, P.K.; Sanyal, G.; Gupta, N. Improved model for the stability analysis of wireless sensor network against malware attacks. Wirel. Pers. Commun. 2021, 116, 2525–2548. [Google Scholar] [CrossRef]
- Bartwal, U.; Mukhopadhyay, S.; Negi, R.; Shukla, S. Security Orchestration, Automation, and Response Engine for Deployment of Behavioural Honeypots. arXiv 2022, arXiv:2201.05326. [Google Scholar]
- Alobaidy, H.A.; Singh, M.J.; Behjati, M.; Nordin, R.; Abdullah, N.F. Wireless Transmissions, Propagation and Channel Modelling for IoT Technologies: Applications and Challenges. IEEE Access 2022, 10, 24095–24131. [Google Scholar] [CrossRef]
- Onwuegbuzie, I.U.; Razak, S.A.; Isnin, I.F. Control messages overhead impact on destination-oriented directed acyclic graph—A wireless sensor networks objective functions performance comparison. J. Comput. Theor. Nanosci. 2020, 17, 1227–1235. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, W.; Chen, W.; Liu, J.; Ni, Y.; Yang, Y. MSCR: Multidimensional secure clustered routing scheme in hierarchical wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 14. [Google Scholar] [CrossRef]
- Roja, P.E.; Misbha, D.S. Lightweight Secure Key Distribution Protocol (LSKDP) for Wireless Sensor Networks. ECS Trans. 2022, 107, 8239. [Google Scholar] [CrossRef]
- Shah, K.; Jinwala, D. Privacy-preserving secure expansive aggregation with malicious node identification in linear wireless sensor networks. Front. Comput. Sci. 2021, 15, 156813. [Google Scholar] [CrossRef]
- Castelletti, F.; Peluso, S. Network structure learning under uncertain interventions. J. Am. Stat. Assoc. 2022, 1–12. [Google Scholar] [CrossRef]
- Alrahhal, H.; Jamous, R.; Ramadan, R.; Alayba, A.M.; Yadav, K. Utilising Acknowledge for the Trust in Wireless Sensor Networks. Appl. Sci. 2022, 12, 2045. [Google Scholar] [CrossRef]
- Mahmood, T.; Li, J.; Pei, Y.; Akhtar, F.; Butt, S.A.; Ditta, A.; Qureshi, S. An intelligent fault detection approach based on reinforcement learning system in wireless sensor network. J. Supercomput. 2022, 78, 3646–3675. [Google Scholar] [CrossRef]
- Rajasoundaran, S.; Prabu, A.V.; Routray, S.; Malla, P.P.; Kumar, G.S.; Mukherjee, A.; Qi, Y. Secure routing with multi-watchdog construction using deep particle convolutional model for IoT based 5G wireless sensor networks. Comput. Commun. 2022, 187, 71–82. [Google Scholar] [CrossRef]
- Parreño, I.F.; Avila, D.F. Analysis of the Cybersecurity in Wireless Sensor Networks (WSN): A Review Literature. Dev. Adv. Def. Secur. 2022, 83–102. [Google Scholar]
- Ametepe, A.F.; Ahouandjinou, A.S.; Ezin, E.C. Robust encryption method based on AES-CBC using elliptic curves Diffie–Hellman to secure data in wireless sensor networks. Wirel. Netw. 2022, 28, 991–1001. [Google Scholar] [CrossRef]
- Cortés-Leal, A.; Del-Valle-Soto, C.; Cardenas, C.; Valdivia, L.J.; Del Puerto-Flores, J.A. Performance Metric Analysis for a Jamming Detection Mechanism under Collaborative and Cooperative Schemes in Industrial Wireless Sensor Networks. Sensors 2021, 22, 178. [Google Scholar] [CrossRef] [PubMed]
- Pajila, P.J.; Julie, E.G.; Robinson, Y.H. FBDR-Fuzzy based DDoS attack Detection and Recovery mechanism for wireless sensor networks. Wirel. Pers. Commun. 2022, 122, 3053–3083. [Google Scholar] [CrossRef]
- Ramisetty, S.; Anand, D.; Verma, S.; Alaboudi, A.A. SC-MCHMP: Score-Based Cluster Level Hybrid Multi-Channel MAC Protocol for Wireless Sensor Network. In Information Security Handbook; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–18. [Google Scholar]
- Saravana Kumar, N.M.; Suryaprabha, E.; Hariprasath, K. Machine learning based hybrid model for energy-efficient secured transmission in wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 887–902. [Google Scholar] [CrossRef]
- Gayathri, A.; Prabu, A.V.; Rajasoundaran, S.; Routray, S.; Narayanasamy, P.; Kumar, N.; Qi, Y. Cooperative and feedback based authentic routing protocol for energy-efficient IoT systems. Concurr. Comput. Pract. Exp. 2022, 34, e6886. [Google Scholar] [CrossRef]
- Naresh, V.S.; Allavarpu, V.V.; Reddi, S. Provably secure blockchain privacy-preserving smart contract centric dynamic group key agreement for large WSN. J. Supercomput. 2022, 78, 8708–8732. [Google Scholar] [CrossRef]
- Singh, S.; Saini, H.S. Intelligent ad-hocon-demand multipath distance vector for wormhole attack in clustered WSN. Wirel. Pers. Commun. 2022, 122, 1305–1327. [Google Scholar] [CrossRef]
- Salim, A.; Osamy, W.; Aziz, A.; Khedr, A.M. SEEDGT: Secure and energy-efficient data gathering technique for IoT applications based WSNs. J. Netw. Comput. Appl. 2022, 202, 103353. [Google Scholar] [CrossRef]
- Barani Sundaram, B.; Kedir, T.; Mishra, M.K.; Yesuf, S.H.; Tiwari, S.M.; Karthika, P. Security analysis for Sybil attack in sensor network using compare and match-position verification method. In Mobile Computing and Sustainable Informatics; Springer: Singapore, 2022; pp. 55–64. [Google Scholar]
- Rajasoundaran, S.; Kumar, S.V.; Selvi, M.; Ganapathy, S.; Rakesh, R.; Kannan, A. Machine learning based volatile block chain construction for secure routing in decentralized military sensor networks. Wirel. Netw. 2021, 27, 4513–4534. [Google Scholar] [CrossRef]
- Wazirali, R.; Ahmad, R. Machine learning approaches to detect DoS and their effect on WSNs lifetime. CMC Comput. Mat. Contin. 2021, 70, 4921–4946. [Google Scholar] [CrossRef]
- Yang, T.; Zhai, F.; Xu, H.; Li, W. Design of a secure and efficient authentication protocol for real-time accesses of multiple users in PIoT-oriented multi-gateway WSNs. Energy Rep. 2022, 8, 1200–1211. [Google Scholar] [CrossRef]
- Anwar, A.H.; Kamhoua, C.A. Cyber Deception using Honeypot Allocation and Diversity: A Game Theoretic Approach. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 543–549. [Google Scholar]
- Wan, Y.; Chen, K.; Huang, F.; Wang, P.; Leng, X.; Li, D.; Kang, J.; Qiu, Z.; Yao, Y. A flexible and stretchable bionic true random number generator. Nano Res. 2022, 15, 4448–4456. [Google Scholar] [CrossRef]
- Lacuesta, R.; Lloret, J.; Garcia, M.; Penalver, L. A secure protocol for spontaneous wireless ad hoc networks creation. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 629–641. [Google Scholar] [CrossRef]
- Sorribes, J.V.; Peñalver, L.; Lloret, J. A Spontaneous Wireless Ad Hoc Trusted Neighbor Network Creation Protocol. Wirel. Commun. Mob. Comput. 2021, 2021, 5531923. [Google Scholar] [CrossRef]
- Onasanya, A.; Elshakankiri, M. Smart integrated IoT healthcare system for cancer care. Wirel. Netw. 2021, 27, 4297–4312. [Google Scholar] [CrossRef]
- Mahajan, H.B.; Badarla, A. Cross-layer protocol for WSN-assisted IoT smart farming applications using nature inspired algorithm. Wirel. Pers. Commun. 2021, 121, 3125–3149. [Google Scholar] [CrossRef]
Simulation Parameters | Details |
---|---|
Simulator Name | NS-3.35 |
Number of Sensor Nodes | Maximum 300 |
Network Area | 1000 m × 1000 m |
MAC | IEEE 802.11 |
Channel Type | Wireless |
Virtual Backbone | ODAC |
MAC Security | WIHFM |
Data Traffic | Variable Bit Rate (VBR) |
Signal Propagation | Two Ray Ground |
Initial Energy (Joules) | 50 |
Transmission Range (meters) | 150 |
Channel Frequency (GHz) | 2.4 |
Mobility Rate (m/s) | 10, 20, 30, 40, 50 |
Antenna Model | Omnidirectional |
Routing Protocol | AODV/OLSR |
Simulation Time (Seconds) | 300 |
Encryption Techniques | Space Complexity (Kilobytes, KB) | Time Complexity (Milliseconds) | Device Adaptability |
---|---|---|---|
DES/RSA | 178 | 890 | Not suitable for tiny sensors |
AES/DSA | 166 | 655 | Moderately good for tiny sensors |
Twofish/DSA | 172 | 660 | Moderately good for tiny sensors |
DH/ECCDS | 170 | 726 | Not suitable for tiny sensors |
AES/ECCDS | 127 | 515 | Suitable for tiny sensors and patch-type devices |
Security Techniques | Working Strategy | Response Time (Milliseconds) | Lightweight Encapsulation Adaptability |
---|---|---|---|
DES/RSA | Symmetric/Authentication | 780 | No |
AES/DSA | Symmetric/Authentication | 638 | No |
Twofish/DSA | Symmetric/Authentication | 645 | No |
DH/ECCDS | Asymmetric/Authentication | 704 | No |
AES/ECCDS | Symmetric/Authentication | 485 | Yes |
Backbone Management Strategies | Channel Recreation Latency (msec) |
---|---|
WIHFM-ODAC | 87 |
BASR | 126 |
SZ-MAC | 137 |
TBNE | 155 |
Backbone Management Strategies | Specificity (%) |
---|---|
WIHFM | 98.95 |
BASR | 95.08 |
SZ-MAC | 95.34 |
TBNE | 94.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soundararajan, R.; Rajagopal, M.; Muthuramalingam, A.; Hossain, E.; Lloret, J. Interleaved Honeypot-Framing Model with Secure MAC Policies for Wireless Sensor Networks. Sensors 2022, 22, 8046. https://doi.org/10.3390/s22208046
Soundararajan R, Rajagopal M, Muthuramalingam A, Hossain E, Lloret J. Interleaved Honeypot-Framing Model with Secure MAC Policies for Wireless Sensor Networks. Sensors. 2022; 22(20):8046. https://doi.org/10.3390/s22208046
Chicago/Turabian StyleSoundararajan, Rajasoundaran, Maheswar Rajagopal, Akila Muthuramalingam, Eklas Hossain, and Jaime Lloret. 2022. "Interleaved Honeypot-Framing Model with Secure MAC Policies for Wireless Sensor Networks" Sensors 22, no. 20: 8046. https://doi.org/10.3390/s22208046
APA StyleSoundararajan, R., Rajagopal, M., Muthuramalingam, A., Hossain, E., & Lloret, J. (2022). Interleaved Honeypot-Framing Model with Secure MAC Policies for Wireless Sensor Networks. Sensors, 22(20), 8046. https://doi.org/10.3390/s22208046