A Metamaterial Inspired AMC Backed Dual Band Antenna for ISM and RFID Applications
Abstract
:1. Introduction
Purpose of the Design
2. Materials and Methods
2.1. Antenna Design
2.2. Iterations of the Designed Antenna
2.3. Design Principle of Proposed Antenna
2.4. Unit Cell Design and Parameter Specifications
2.5. AMC Structure Design
3. Results
3.1. Results of the Antenna without AMC Backing
3.2. Results of the Antenna with AMC Backing
4. Performance Comparison with the Existing Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.M.; Faruque, M.R.I.; Islam, M.T. Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System. Sci. Rep. 2018, 8, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwareth, H.; Ibrahim, I.M.; Zakaria, Z.; Al-Gburi, A.J.A.; Ahmed, S.; Nasser, A.Z. A Wideband High-Gain Microstrip Array Antenna Integrated with Frequency-Selective Surface for Sub-6 GHz 5G Applications. Micromachines 2022, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Tripathi, V.S.; Tiwari, S. Dual-Band Microstrip Patch Antenna Miniaturization Using Metamaterial. J. Eng. 2013, 2013, 928078. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Chaudhary, R.K. Dual Band Metamaterial Inspired Antenna for Bluetooth/Wi-Max Applications. SKIT Res. J. 2019, 9, 43–48. [Google Scholar]
- Sharma, S.K.; Chaudhary, R.K. Dual-Band Metamaterial-Inspired Antenna for Mobile Applications. Microwave Opt. Technol. Lett. 2015, 57, 1444–1447. [Google Scholar] [CrossRef]
- Sahar, N.M.; Islam, M.T.; Misran, N. A reconfigurable multiband antenna for RFID and GPS applications. Elektron. Ir Elektrotech. 2015, 21, 44–50. [Google Scholar]
- Zhang, H.; Cao, X.-Y.; Gao, J.; Yang, H.-H.; Yang, Q. A Novel Dual-Band Metamaterial Absorber and Its Application for Microstrip Antenna. Prog. Electromagn. Res. Lett. 2014, 44, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Si, L.M.; Zhu, W.; Sun, H.-J. A Compact, Planar, and CPW-Fed Metamaterial-Inspired Dual-Band Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 305–308. [Google Scholar] [CrossRef]
- Shahzad, M.A.; Paracha, K.N.; Naseer, S.; Ahmad, S.; Malik, M.; Farhan, M.; Ghaffar, A.; Hussien, M.; Sharif, A.B. An Artificial Magnetic Conductor-Backed Compact Wearable Antenna for Smart Watch IoT Applications. Electronics 2021, 10, 2908. [Google Scholar] [CrossRef]
- Malik, J.; Kartikeyan, M.V. Metamaterial Inspired Patch Antenna With L-Shape Slot Loaded Ground Plane for Dual Band (WIMAX/WLAN) Applications. Prog. Electromagn. Res. Lett. 2012, 31, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Yeo, J. Dual-Band Long-Range Passive RFID Tag Antenna Using an AMC Ground Plane. IEEE Trans. Antennas Propag. 2012, 6, 2620–2626. [Google Scholar] [CrossRef]
- Reena, P. A Compact Metamaterial inspired Dual-band SRR loaded Antenna for Wireless Applications. Res. J. Quantum Inf. Comput. 2018, 1, 22–25. [Google Scholar]
- Jafargholi, A.; Ghalamkari, B. Dual-Band Slim Microstrip Patch Antennas. IEEE Trans. Antennas Propag. 2018, 66, 6818–6825. [Google Scholar] [CrossRef]
- Nguyen, M.-T.; Lin, Y.-F.; Chen, C.-H.; Chang, C.H.; Chen, H.-M. Shorted Patch Antenna with Multi Slots for a UHF RFID Tag Attached to a Metallic Object. IEEE Access 2021, 9, 111277–111292. [Google Scholar] [CrossRef]
- Daniel, R.S.; Pandeeswari, R.; Deivalakshmi, S. A CPW-fed dual band antenna based on metamaterial inspired split ring structure. In Proceedings of the IEEE 2nd International Conference on Signal and Image Processing (ICSIP), Singapore, 4–6 August 2017. [Google Scholar]
- Kumar, P.S.; Mohan, B.C. Dual-band microstrip patch antenna design with inverted-E slot and U-slot. In Proceedings of the 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 3–4 December 2016. [Google Scholar]
- Daniel, R.S.; Pandeeswari, R.; Raghavan, S. Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications. Appl. Phys. A 2018, 124, 570. [Google Scholar] [CrossRef]
- Selvi, N.T.; Selvan, P.N.T.; Babu, S.P.; Pandeeswari, R.; Daniel, R.S. A Broad-Side Coupled SRR Inspired CPW Fed Dual Band Antenna for WiMAX and Wave Applications. Prog. Electromagn. Res. C 2018, 80, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Sharaf, M.H.; Zaki, A.I.; Hamad, R.K.; Omer, M.M.M. A Novel Dual-Band (38/60 GHz) Patch Antenna for 5G Mobile Handsets. Sensors 2020, 20, 2541. [Google Scholar] [CrossRef]
- Alanazi, M.D.; Khamas, S.K. A Compact Dual Band MIMO Dielectric Resonator Antenna with improved Performance for mm-Wave Applications. Sensors 2022, 22, 5056. [Google Scholar] [CrossRef]
- Naqvi, S.A.; Baqir, M.A.; Gourley, G.; Iftikhar, A.; Khan, M.S.; Anagnostou, D.E. A Novel Meander Line Metamaterial Absorber Operating at 24 GHz and 28 GHz for the 5G Applications. Sensors 2022, 22, 3764. [Google Scholar] [CrossRef]
- Trinh-Van, S.; Kwon, O.H.; Jung, E.; Park, J.; Yu, B.; Kim, K.; Seo, J.; Hwang, K.C. A Low-Profile High-Gain and Wideband Log-Periodic Meandered Dipole Array Antenna with a Cascaded Multi-Section Artificial Magnetic Conductor Structure. Sensors 2019, 19, 4404. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, X.; Fan, Y.; Xiong, L. Dual-Band Textile Antenna with Dual Circular Polarizations Using Polarization Rotation AMC for Off-Body Communications. IEEE Trans. Antennas Propag. 2022, 70, 4189–4199. [Google Scholar] [CrossRef]
- Wajid, A.; Ahmad, A.; Ullah, S.; Choi, D.-U.; Islam, F.U. Performance Analysis of Wearable Dual-Band Patch Antenna Based on EBG and SRR Surfaces. Sensors 2022, 22, 5208. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, G.L.; Atanasov, B.N.; Atanasov, N.T. Fully textile dual band logo antenna for IoT wearable devices. Sensors 2022, 22, 4516. [Google Scholar] [CrossRef] [PubMed]
- Decoopman, T.; Tayeb, G.; Enoch, S.; Maystre, D.; Gralak, B. Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability. Phys. Rev. Lett. 2006, 97, 073905. [Google Scholar] [CrossRef] [Green Version]
- de Sabata, A.; Matekovits, L.; Buta, A.; Dassano, G.; Silaghi, A. Frequency Selective Surface for Ultra-Wide Band Filtering and Shielding. Sensors 2022, 22, 1896. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Abdulhameed, M.K.; Saeidi, T. Enhancing Gain for UWB Antennas Using FSS: A Systematic Review. Mathematics 2021, 9, 3301. [Google Scholar] [CrossRef]
- Ayegba, A.; Fonyuy, W.D.; Adejoh, I.Y.; Odoma, A.N. Design of A 4.5 GHz Rectangular Microstrip Patch Antenna. Int. J. Trend Res. Dev. 2017, 4, 22–25. [Google Scholar]
- Park, S.J.; Ahn, Y.H. Substrate effects on terahertz metamaterial resonances for various metal thickness. J. Korean Phys. Soc. 2014, 65, 1843–1847. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Ibrahim, I.; Ahmad, K.S.; Zakaria, Z.; Zeain, M.Y.; Abdulhameed, M.K.; Saeidi, T. A miniaturised UWB FSS with Stop-band Characteristics for EM Shielding Applications. Prz. Elektrotechn. 2021, 8, 142–145. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U. Electrically Compact SRR-Loaded Metamaterial Inspired Quad Band Antenna for Bluetooth/WiFi/WLAN/WiMAX System. Electronics 2019, 8, 790. [Google Scholar] [CrossRef] [Green Version]
- Afsar, S.U.; Faruque, M.R.I.; Hossain, M.J.; Khandaker, M.U.; Osman, H.; Alamri, S. Modified Hexagonal Split Ring Resonator Based on an Epsilon-Negative Metamaterial for Triple-Band Satellite Communication. Micromachines 2021, 12, 878. [Google Scholar] [CrossRef] [PubMed]
- Omisakin, A. Metamaterial AMC Backed Antenna for Body-Worn Application at 2.45 GHz. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2017. [Google Scholar]
Parameters | Dimension (mm) |
---|---|
L | 70 |
W | 31 |
Ht | 1.6 |
fw | 3 |
W1 | 15 |
W2 | 3 |
W3 | 16 |
W4 | 3 |
L1 | 51 |
L2 | 40 |
L3 | 15 |
L4 | 6 |
L5 | 3.9 |
L6 | 3 |
lg | 33.5 |
wg | 3 |
L0 | 8 |
Li | 7.2 |
g | 0.3 |
d | 0.5 |
a | 0.5 |
Parameters | Dimension (mm) |
---|---|
L | 35 |
a | 34.5 |
b | 22 |
c | 5.5 |
g | 1 |
G | 6 |
r | 5 |
R | 5 |
gw | 5 |
gl | 15 |
g1 | 0.5 |
Ht | 1.6 |
Parameters | Dimension (mm) |
---|---|
LU | 112 |
Ug | 2.5 |
Uw | 32 |
Ul | 22 |
Reference No. | Dimension (mm × mm × mm) | Resonant Frequency (GHz) | Bandwidth (GHz) | Gain (dBi) | Efficiency (%) |
---|---|---|---|---|---|
5 | 50 × 50 × 1.6 | 1.7, 2.17 | 1.61–1.84 2.08–2.5 | 1.8, 1.6 | 97.2, 99.1 |
8 | 31.7 × 27 × 1.6 | 2.6, 3.6 | 2.595–2.654 3.185–4.245 | 1.4, 1.9 | 79.3, 95.6 |
11 | 140 × 80 × 1.6 | 1.8, 3.5 | 0.869–0.8697 0.910–0.914 | 2.1, 6.74 | - |
12 | 27 × 22 × 1.6 | 2.55, 3.48 | 2.46–2.64 3.42–3.55 | 1.42, 0.73 | 90.66, 70.40 |
13 | 30 × 50 × 1.54 | 1.9, 3.6 | 1.85–1.93 3.48–3.57 | 1, 2.4 | 28, 25 |
15 | 21.57 × 25.62 × 1.6 | 2.36, 4.45 | 2.29–2.4 3.48–3.57 | - | - |
16 | 35.05 × 18.24 × 1.6 | 3, 4.6 | 2.28–3.04 4.55–4.65 | 2.49, 3.68 | 48.45, 56.52 |
17 | 30 × 30 × 0.8 | 3.74, 5.1 | 3.57–4.04 4.73–5.59 | 1.23, 1.57 | 82, 82 |
18 | 31 × 25 × 1.6 | 3.42, 6.07 | 3–3.84 5.94–6.25 | - | - |
24 | 98 × 109.4 × 0.01 | 2.4, 5.4 | 2.39–2.44 5.38–5.43 | - | 64.7, 52.4 |
25 | 45 × 85 × 0.057 | 2.4, 5.47 | 2.393–2.488 4.75–6 | 1.7, 4.5 | 30, 90 |
Proposed work | 70 × 31 × 1.6 | 0.912, 2.45 | 0.905–0.923 2.382–2.516 | 2.87, 6.8 | 96, 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najumunnisa, M.; Sastry, A.S.C.; Madhav, B.T.P.; Das, S.; Hussain, N.; Ali, S.S.; Aslam, M. A Metamaterial Inspired AMC Backed Dual Band Antenna for ISM and RFID Applications. Sensors 2022, 22, 8065. https://doi.org/10.3390/s22208065
Najumunnisa M, Sastry ASC, Madhav BTP, Das S, Hussain N, Ali SS, Aslam M. A Metamaterial Inspired AMC Backed Dual Band Antenna for ISM and RFID Applications. Sensors. 2022; 22(20):8065. https://doi.org/10.3390/s22208065
Chicago/Turabian StyleNajumunnisa, Md., Ambadapudi Srinivasa Chandrasekhara Sastry, Boddapati Taraka Phani Madhav, Sudipta Das, Niamat Hussain, Syed Samser Ali, and Muhammad Aslam. 2022. "A Metamaterial Inspired AMC Backed Dual Band Antenna for ISM and RFID Applications" Sensors 22, no. 20: 8065. https://doi.org/10.3390/s22208065
APA StyleNajumunnisa, M., Sastry, A. S. C., Madhav, B. T. P., Das, S., Hussain, N., Ali, S. S., & Aslam, M. (2022). A Metamaterial Inspired AMC Backed Dual Band Antenna for ISM and RFID Applications. Sensors, 22(20), 8065. https://doi.org/10.3390/s22208065