Network Meta-Analysis of Trials Testing If Home Exercise Programs Informed by Wearables Measuring Activity Improve Peripheral Artery Disease Related Walking Impairment
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Data Extraction and Outcomes
2.3. Quality Assessment
2.4. Data Analysis
3. Results
3.1. Study Selection
3.2. Patient Characteristics
3.3. Study Characteristics
3.4. Risk of Bias of Included Studies
3.5. Network Model
3.6. Effect of the Home Exercise Programs on Walking Distance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat. Rev. Cardiol. 2022, 19, 456–474. [Google Scholar] [CrossRef] [PubMed]
- Thanigaimani, S.; Phie, J.; Sharma, C.; Wong, S.; Ibrahim, M.; Huynh, P.; Moxon, J.; Jones, R.; Golledge, J. Network Meta-Analysis Comparing the Outcomes of Treatments for Intermittent Claudication Tested in Randomized Controlled Trials. J. Am. Heart Assoc. 2021, 10, e019672. [Google Scholar] [CrossRef] [PubMed]
- Abola, M.T.B.; Golledge, J.; Miyata, T.; Rha, S.W.; Yan, B.P.; Dy, T.C.; Ganzon, M.S.V.; Handa, P.K.; Harris, S.; Zhisheng, J.; et al. Asia-Pacific Consensus Statement on the Management of Peripheral Artery Disease: A Report from the Asian Pacific Society of Atherosclerosis and Vascular Disease Asia-Pacific Peripheral Artery Disease Consensus Statement Project Committee. J. Atheroscler. Thromb. 2020, 27, 809–907. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Spring, B.; Tian, L.; Treat-Jacobson, D.; Ferrucci, L.; Lloyd-Jones, D.; Zhao, L.; Polonsky, T.; Kibbe, M.R.; Bazzano, L.; et al. Effect of Low-Intensity vs High-Intensity Home-Based Walking Exercise on Walk Distance in Patients With Peripheral Artery Disease: The LITE Randomized Clinical Trial. JAMA 2021, 325, 1266–1276. [Google Scholar] [CrossRef]
- Cunningham, M.A.; Swanson, V.; Pappas, E.; O’Carroll, R.E.; Holdsworth, R.J. Illness beliefs and walking behavior after revascularization for intermittent claudication: A qualitative study. J. Cardiopulm. Rehabil. Prev. 2014, 34, 195–201. [Google Scholar] [CrossRef]
- Harwood, A.E.; Smith, G.E.; Cayton, T.; Broadbent, E.; Chetter, I.C. A Systematic Review of the Uptake and Adherence Rates to Supervised Exercise Programs in Patients with Intermittent Claudication. Ann. Vasc. Surg. 2016, 34, 280–289. [Google Scholar] [CrossRef]
- Golledge, J.; Singh, T.P.; Alahakoon, C.; Pinchbeck, J.; Yip, L.; Moxon, J.V.; Morris, D.R. Meta-analysis of clinical trials examining the benefit of structured home exercise in patients with peripheral artery disease. Br. J. Surg. 2019, 106, 319–331. [Google Scholar] [CrossRef]
- Brickwood, K.J.; Watson, G.; O’Brien, J.; Williams, A.D. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth 2019, 7, e11819. [Google Scholar] [CrossRef]
- Lyons, E.J.; Lewis, Z.H.; Mayrsohn, B.G.; Rowland, J.L. Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. J. Med. Internet. Res. 2014, 16, e192. [Google Scholar] [CrossRef] [Green Version]
- Preusse, K.C.; Mitzner, T.L.; Fausset, C.B.; Rogers, W.A. Older Adults’ Acceptance of Activity Trackers. J. Appl. Gerontol. 2017, 36, 127–155. [Google Scholar] [CrossRef]
- Cadmus-Bertram, L.A.; Marcus, B.H.; Patterson, R.E.; Parker, B.A.; Morey, B.L. Randomized Trial of a Fitbit-Based Physical Activity Intervention for Women. Am. J. Prev. Med. 2015, 49, 414–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrepnik, N.; Spitzer, A.; Altman, R.; Hoekstra, J.; Stewart, J.; Toselli, R. Assessing the Impact of a Novel Smartphone Application Compared With Standard Follow-Up on Mobility of Patients With Knee Osteoarthritis Following Treatment With Hylan G-F 20: A Randomized Controlled Trial. JMIR Mhealth Uhealth 2017, 5, e64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S.; Blevins, S.M. Step-monitored home exercise improves ambulation, vascular function, and inflammation in symptomatic patients with peripheral artery disease: A randomized controlled trial. J. Am. Heart Assoc. 2014, 3, e001107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Liu, K.; Guralnik, J.M.; Criqui, M.H.; Spring, B.; Tian, L.; Domanchuk, K.; Ferrucci, L.; Lloyd-Jones, D.; Kibbe, M.; et al. Home-based walking exercise intervention in peripheral artery disease: A randomized clinical trial. JAMA 2013, 310, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Spring, B.; Berger, J.S.; Treat-Jacobson, D.; Conte, M.S.; Creager, M.A.; Criqui, M.H.; Ferrucci, L.; Gornik, H.L.; Guralnik, J.M.; et al. Effect of a Home-Based Exercise Intervention of Wearable Technology and Telephone Coaching on Walking Performance in Peripheral Artery Disease: The HONOR Randomized Clinical Trial. JAMA 2018, 319, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Tew, G.A.; Humphreys, L.; Crank, H.; Hewitt, C.; Nawaz, S.; Al-Jundi, W.; Trender, H.; Michaels, J.; Gorely, T. The development and pilot randomised controlled trial of a group education programme for promoting walking in people with intermittent claudication. Vasc. Med. 2015, 20, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.W.; Montgomery, P.S.; Wang, M. Minimal clinically important differences in treadmill, 6-minute walk, and patient-based outcomes following supervised and home-based exercise in peripheral artery disease. Vasc. Med. 2018, 23, 349–357. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Guralnik, J.M.; Criqui, M.H.; Ferrucci, L.; Zhao, L.; Liu, K.; Domanchuk, K.; Spring, B.; Tian, L.; Kibbe, M.; et al. Home-based walking exercise in peripheral artery disease: 12-month follow-up of the GOALS randomized trial. J. Am. Heart Assoc. 2014, 3, e000711. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Sally, G. Cochrane Handbook for SystematicReviews of Interventions; The Cochrane Collaboration: Melbourne, Australia, 2011. [Google Scholar]
- Altman, D.G.; Bland, J.M. Standard deviations and standard errors. BMJ 2005, 331, 903. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Zhang, J.; Hodges, J.S.; Chu, H. Performing Arm-Based Network Meta-Analysis in R with the pcnetmeta Package. J. Stat. Softw. 2017, 80, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, S.; Welton, N.J.; Caldwell, D.M.; Ades, A.E. Checking consistency in mixed treatment comparison meta-analysis. Stat. Med. 2010, 29, 932–944. [Google Scholar] [CrossRef] [PubMed]
- Salanti, G.; Ades, A.E.; Ioannidis, J.P.A. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Bearne, L.M.; Volkmer, B.; Peacock, J.; Sekhon, M.; Fisher, G.; Galea Holmes, M.N.; Douiri, A.; Amirova, A.; Farran, D.; Quirke-McFarlane, S.; et al. Effect of a Home-Based, Walking Exercise Behavior Change Intervention vs Usual Care on Walking in Adults With Peripheral Artery Disease: The MOSAIC Randomized Clinical Trial. JAMA 2022, 327, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.C.; Lunos, S.; Carlson, T.; Henderson, K.; Lightbourne, M.; Nelson, B.; Hodges, J.S. Effects of a home-based walking intervention on mobility and quality of life in people with diabetes and peripheral arterial disease: A randomized controlled trial. Diabetes Care 2011, 34, 2174–2179. [Google Scholar] [CrossRef] [Green Version]
- Duscha, B.D.; Piner, L.W.; Patel, M.P.; Crawford, L.E.; Jones, W.S.; Patel, M.R.; Kraus, W.E. Effects of a 12-Week mHealth Program on FunctionalCapacity and Physical Activity in Patients With PeripheralArtery Disease. Am. J. Cardiol. 2018, 122, 879–884. [Google Scholar] [CrossRef]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S.; Scott, K.J.; Blevins, S.M. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: A randomized controlled trial. Circulation 2011, 123, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Larsen, A.; Lassen, N.A. Effect of Daily Muscular Exercise in Patients with Intermittent Claudication. Lancet 1966, 288, 1093–1095. [Google Scholar] [CrossRef]
- Collins, T.C.; Lu, L.; Ahluwalia, J.S.; Nollen, N.L.; Sirard, J.; Marcotte, R.; Post, S.; Zackula, R. Efficacy of Community-Based Exercise Therapy among African American Patients With Peripheral Artery Disease: A Randomized Clinical Trial. JAMA Netw. Open 2019, 2, e187959. [Google Scholar] [CrossRef]
- Brenner, I.K.M.; Brown, C.A.; Hains, S.J.M.; Tranmer, J.; Zelt, D.T.; Brown, P.M. Low-Intensity Exercise Training Increases Heart Rate Variability in Patients With Peripheral Artery Disease. Biol. Res. Nurs. 2020, 22, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.R.; Hodges, L.D.; Das, S.K.; Brodie, D.A. The impact of short term supervised and home-based walking programmes on heart rate variability in patients with peripheral arterial disease. J. Sports Sci. Med. 2007, 6, 471–476. [Google Scholar] [PubMed]
- McDermott, M.M.; Tian, L.; Criqui, M.H.; Ferrucci, L.; Conte, M.S.; Zhao, L.; Li, L.; Sufit, R.; Polonsky, T.S.; Kibbe, M.R.; et al. Meaningful change in 6-minute walk in people with peripheral artery disease. J. Vasc. Surg. 2021, 73, 267–276.e1. [Google Scholar] [CrossRef]
- Kanejima, Y.; Kitamura, M.; Izawa, K.P. Self-monitoring to increase physical activity in patients with cardiovascular disease: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2019, 31, 163–173. [Google Scholar] [CrossRef]
- Izawa, K.P.; Watanabe, S.; Hiraki, K.; Morio, Y.; Kasahara, Y.; Takeichi, N.; Oka, K.; Osada, N.; Omiya, K. Determination of the effectiveness of accelerometer use in the promotion of physical activity in cardiac patients: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 1896–1902. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Haaland, B.A.; Bilger, M.; Sahasranaman, A.; Sloan, R.A.; Nang, E.E.K.; Evenson, K.R. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): A randomised controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 983–995. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Apruzzese, P.; Galper, B.Z.; Murphy, T.P.; Hirsch, A.T.; Cutlip, D.E.; Mohler, E.R., 3rd; Regensteiner, J.G.; Cohen, D.J. Cost-effectiveness of supervised exercise, stenting, and optimal medical care for claudication: Results from the Claudication: Exercise Versus Endoluminal Revascularization (CLEVER) trial. J. Am. Heart Assoc. 2014, 3, e001233. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.; Sounderajah, V.; Normahani, P.; Acharya, A.; Markar, S.R.; Darzi, A.; Bicknell, C.; Riga, C. Wearable Activity Monitors in Home Based Exercise Therapy for Patients with Intermittent Claudication: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 676–687. [Google Scholar] [CrossRef]
- Berenguer, A.; Goncalves, J.; Hosio, S.; Ferreira, D.; Anagnostopoulos, T.; Kostakos, V. Are smartphones ubiquitous? An in-depth survey of smartphone adoption by seniors. IEEE Consum. Electron. Mag. 2016, 6, 104–110. [Google Scholar] [CrossRef]
Reference | Group | Sample Size | Age (Years) | Male Gender (%) | ABPI | BMI | Currently Smoking (%) | Diabetes (%) | CHD (%) | MI (%) | HTN (%) | Dylipidemia (%) | Stroke (%) | Classic Claudication Symptoms (%) | Exertion Leg Pain Other than Claudication (%) | No Exertional Leg Pains (%) | History of Leg Revascularisation (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
McDermott 2021 [4] | Intervention | 124 | 68.8 (8.7) | 51.6 | 0.67 (0.15) | 31.1 (7.3) | 23.4, 57.3 * | 42.7 | NR | 25.8 | 89.5 | NR | NR | NR | NR | NR | NR |
Control | 65 | 69.5 (10.1) | 50.8 | 0.67 (0.15) | 30.8 (7.3) | 21.5, 58.3 * | 53.9 | NR | 10.8 | 80.0 | NR | NR | NR | NR | NR | NR | |
McDermott 2018 [15] | Intervention | 99 | 70.1 (10.6) | 46.0 | 0.65 (0.15) | 29.6 (5.3) | 79.8 ^ | 35.4 | NR | 16.2 | NR | NR | NR | 17.2 | 68.7 | 14.1 | 36.4 |
Control | 101 | 70.4 (10.1) | 49.0 | 0.67 (0.14) | 29.9 (5.3) | 90.1 ^ | 31.7 | NR | 20.8 | NR | NR | NR | 21.8 | 66.3 | 11.9 | 43.6 | |
Tew 2015 [16] | Intervention | 14 | 69.1 (7.6) | 71.4 | 0.67 (0.17) | 27.9 (3.5) | 71.0 * | 7.0 | 14.0 | NR | 64.0 | NR | 0.0 | NR | NR | NR | NR |
Control | 9 | 67.8 (14.1) | 66.7 | 0.64 (0.18) | 29.6 (7.4) | 56.0 * | 22.0 | 33.0 | NR | 78.0 | NR | 11.0 | NR | NR | NR | NR | |
Gardner 2014 [13] | Intervention | 53 | 67.0 (10.0) | 52.0 | 0.68 (0.24) | 29.0 (5.7) | 35.0 | 40.0 | 35.0 | 17.0 | 88.0 | 93.0 | 25.0 | NR | NR | NR | 37.0 |
Control | 51 | 65.0 (9.0) | 60.0 | 0.74 (0.21) | 29.0 (6.1) | 42.0 | 37.0 | 28.0 | 18.0 | 83.0 | 87.0 | 10.0 | NR | NR | NR | 27.0 | |
McDermott 2013 [14] | Intervention | 88 | 69.3 (9.5) | 50.5 | 0.67 (0.16) | 29.1 (7.0) | 26.8 | 28.9 | NR | 13.4 | NR | NR | 9.3 | 32.0 | 24.7 | 8.3 | NR |
Control | 90 | 71.0 (9.6) | 49.5 | 0.67 (0.18) | 29.0 (6.5) | 22.7 | 37.1 | NR | 14.4 | NR | NR | 15.5 | 23.7 | 29.9 | 8.3 | NR | |
McDermott 2014 [18] | Intervention | 81 | 69.9 (9.2) | 48.2 | 0.67 (0.16) | 28.7 (6.5) | 24.7 | 30.9 | NR | 13.6 | NR | NR | 8.6 | 70.4 | NR | NR | NR |
Control | 87 | 72.0 (9.3) | 49.4 | 0.68 (0.18) | 29.0 (6.7) | 18.4 | 36.8 | NR | 13.8 | NR | NR | 17.2 | 75.9 | NR | NR | NR | |
Bearne 2022 [27] | Intervention | 95 | 67.6 (8.7) | 69.0 | 0.63 (0.12) | 26.7 (5.7) | 86.0 ^ | 36.0 | NR | NR | 59.0 | NR | NR | 89.0 | 44.0 | 0.0 | 30.0 |
Control | 95 | 68.2 (9.0) | 71.0 | 0.63 (0.12) | 26.9 (5.8) | 90.0 ^ | 32.0 | NR | NR | 63.0 | NR | NR | 94.0 | 60.0 | 0.0 | 25.0 | |
Duscha 2018 [29] | Intervention | 10 | 66.1 (9.8) | 80 | 0.6 ± 0.2 | 26.6 ± 4.5 | 100.0 | 10.0 | 60.0 | NR | 60.0 | 100 | NR | NR | NR | NR | NR |
Control | 9 | 73.1 (4.7) | 88.9 | 0.6 ± 0.1 | 31.2 ± 7.6 | 100.0 | 33.3 | 66.7 | NR | 77.8 | 88.9 | NR | NR | NR | NR | NR | |
Gardner 2011 [30] | Intervention | 29 | 65.0 (11.0) | 45 | 0.72 (0.23) | 29.9 (5.6) | 10.0 | 43.0 | NR | NR | 88.0 | 90.0 | NR | NR | NR | NR | NR |
Control | 30 | 65.0 (10.0) | 54 | 0.76(0.22) | 29.7(6.9) | 10.0 | 31.0 | NR | NR | 79.0 | 85.0 | NR | NR | NR | NR | NR | |
Brenner 2020 [33] | Intervention | 18 | 68.6 (6.9) | 67 | NR | 27.6 (5.2) | 44.0 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Control | 15 | 63.7 (8.5) | 60 | NR | 26.4 (5.2) | 53.0 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Collins 2011 [28] | Intervention | 72 | 66.2 (10.2) | 75 | 0.96 (0.4) | 35.0 (9.3) | 10.0 | NR | NR | NR | 62.0 | 54.0 | NR | NR | NR | NR | NR |
Control | 73 | 66.8 (10.1) | 80 | 0.94 (0.5) | 33.7 (7.0) | 18.0 | NR | NR | NR | 57.0 | 54.0 | NR | NR | NR | NR | NR | |
Sandercock 2007 [34] | Intervention | 15 | 62.0 (14.0) | 80 | 0.60 (0.10) | 27.1 ± 4.2 | 40.0 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Control | 15 | 67.0 (6.0) | 66.7 | 0.60 (0.10) | 27.7 ± 6.7 | 46.7 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Collins 2019 [32] | Intervention | 57 | 62.9 (9.7) | 82.5 | 0.86 (0.14) | 31.6 (7.9) | 66.7 ^ | 36.8 | NR | NR | NR | NR | 5.3 | NR | NR | NR | NR |
Intervention | 57 | 65.9 (11.1) | 22.8 | 0.87 (0.14) | 32.8 (16.3) | 57.9 ^ | 31.6 | NR | NR | NR | NR | 3.5 | NR | NR | NR | NR | |
Control | 60 | 63.9 (12.5) | 26.7 | 0.84 (0.15) | 34.4 (10.0) | 58.3 ^ | 38.3 | NR | NR | NR | NR | 1.7 | NR | NR | NR | NR | |
Larsen and Lassen 1966 [31] | Intervention | 7 | 58 (7) | 86.0 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Control | 7 | 56 (6) | 100.0 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Summary statistics | Intervention | 819 | 66.4 (0.3) | 61.8 | 0.71 (0.01) | 29.5 (0.3) | 48.2 | 31.1 | 36.3 | 17.2 | 72.9 | 84.3 | 8.6 | 52.2 | 45.8 | 7.5 | 34.5 |
Control | 707 | 67.1 (0.4) | 62.3 | 0.70 (0.01) | 29.8 (0.3) | 48.2 | 35.3 | 42.6 | 15.6 | 74.0 | 78.7 | 11.1 | 53.9 | 52.1 | 6.7 | 31.9 |
Reference | Program Duration (Weeks) | Number of Facility Visits | Sessions per Week | Duration of Sessions | Face to Face Meeting | Educational Counselling | Online Counselling | Telephone Counselling | Behavioural Counselling | Adherence (%) |
---|---|---|---|---|---|---|---|---|---|---|
McDermott 2021 [4] | 52 | 4 | 5 times per week | 50 min | Yes | Yes | No | Yes | Yes | 85.1 ⸷ 91.9 ⸶ |
McDermott 2018 [15] | 36 | 4 | Variable, but typically 5 days per week | 10–15 min working up to 50 min | Yes | Yes | No | Yes | Yes | 73.9 ⸷ 92.0 ⸶ |
Tew 2015 [16] | 6 | 6 | NR | 30 min and increase daily total steps to more than 7500 | Yes | Yes | No | Yes | Yes | NR |
Gardner 2014 [13] | 12 | 4 | 3 days per week at a self-selected pace | Progressively increased from 20 to 45 min per session | Yes | No | No | No | No | 80.6 ⸸ 81.0 δ |
McDermott 2013 [14] | 24 | 24 | 5 times per week | Working up to 50 min per session | Yes | Yes | No | No | Yes | 84.0 # |
McDermott 2014 | 52 | 26 | At least 5 days per week at home | up to 50 min | Yes | Yes | No | Yes | Yes | NR |
Bearne 2022 [27] | 12 | 2 | 3 times per week | At least 30 min of walking per day | Yes | Yes | No | Yes | Yes | exercise adherence rating scale 1.7 (95% CI: 0.1 to 3.3) |
Collins 2019 [32] | 52 | 26 | 3–5 times per week | 30 to 50 min | Yes | Yes | No | Yes | Yes | NR |
Duscha 2018 [29] | 12 | 0 | NR | NR | No | Yes | Yes | Yes | No | NR * |
Gardner 2011 [30] | 12 | 6 | 3 times per week | 20 min for the first 2 weeks; then progressive increase by 5 min biweekly until total of 45 min walking achieved | Yes | No | No | No | No | NR * |
Brenner 2020 [33] | 12 | 1 | 5 times per week | Until minimal claudication pain | No | No | No | Yes | No | No |
Collins 2011 [28] | 24 | 24 | 4 times per week | 50 min and increase step count by 50 each session | Yes | Yes | No | Yes | Yes | No |
Sandercock 2007 [34] | 12 | 0 | 3 times per week | 30 min | No | No | No | Yes | No | No |
Larsen and Lassen 1966 [31] | 24 | 9 | Once daily | 60 min including rest time | Yes | No | No | No | No | No |
Reference | Name of Wearable | Location of Wearable | Frequency of Wearing | Data Viewable to the Patient | Data Used by Patient for Self-Motivation | Data Used by Investigators for Counselling | Frequency and Format of Counselling |
---|---|---|---|---|---|---|---|
McDermott 2021 [4] | Accelerometer | Worn on the hip | Participants wore their accelerometer during each session and uploaded accelerometer data on exercise frequency, time, and intensity onto the study website using a home computer or tablet provided by the study. | Yes | Yes | Yes | Accelerometer data were viewable to a coach who telephoned participants weekly for 12 months and helped them adhere to their prescribed exercise. |
McDermott 2018 [15] | Accelerometer (Actigraph), FitBit Zip, FitBit Inc.) | Worn on the right hip NR | Accelerometer was worn all the time on the right hip and removed only for bathing or sleeping | Yes | Yes | Yes | Feedback from patients was used to design an appealing home-based exercise intervention. Telephone counselling was provided monthly. |
Tew 2015 [16] | Accelerometer (ActiGraph GT3X+, ActiGraph, Pensacola, FL) | NR | Participants were encouraged to wear their pedometer on a daily basis and to self-monitor their ambulatory activity and intensity of claudication during each session using a specifically-designed exercise diary. | Yes | Yes | Yes | Participants were supported in developing short and long term goals for walking, with reference to their baseline daily steps count recorded by wearing an accelerometer for seven days before attending the workshop. They were also supported in developing an action plan detailing where, when and how their first initial goal will be reached and they are encouraged to repeat this process for each new goal. Two weeks after the educational workshop, participants were contacted by telephone to review progress and discuss goal setting and barriers |
Pedometer (Yamax SW-200 Digi-Walker) | NR | ||||||
Gardner 2014 [13] | Step-activity monitor (StepWatch3TM, Orthoinnovations, Inc., Oklahoma City, OK) | Right ankle | Patients wore the step activity monitor during each session, and returned the monitor and a logbook to the research staff at the end of week 1, 4, 8, and 12. | Yes | Yes | Yes | During each visit, patients had a brief 15-min meetings, monitor data were downloaded, results were reviewed, and feedback was provided for the upcoming month of training. |
Bearne 2022 [27] | Pedometer (Yamax Digi-Walker SW-200) | NR | Participants recorded where, when, and with whom they would walk and established ways to self-monitor their walking exercise. | Yes | Yes | Yes | Walking exercise goals and plans were agreed upon collaboratively with the physical therapist and included identifying progressive, individualized walking targets. Participants received an intervention manual that included an exercise diary, with goal setting, problem-solving, and action planning worksheets. |
Duscha 2018 [29] | Fitbit Charge device (Fitbit, Inc., San Francisco, CA) | Wrist | Wore the device for 2 weeks continuously during waking hours | Yes | No | Yes | Participants were provided a personalized exercise prescription based on steps per day. Study staff had access to patient on-line accounts so that they could better support technical problems, monitor physical activity, and provide motivation and feedback during the study. |
Gardner 2011 [30] | Step activity monitor (StepWatch 3™) | Right ankle | Worn during each session and exercise log book | Yes | Yes | Yes | 15-min meetings with exercise physiologist at 1, 2, 4, 6, 8, 10 and 12 weeks to discuss activity based on step monitor and exercise log, and to give new instructions on exercise duration. |
Collins 2011 [28] | Pedometer | NR | Worn during each exercise session | No | No | Yes | Counselling based on PACE at entry and through biweekly phone calls; entry exercise training (2 sessions) and weekly group walking sessions with an instructor |
Larsen and Lassen 1966 [31] | Pedometer | NR | Participants were given pedometer with instructions to take a daily walk besides their normal physical activity. | Yes | No | Yes | Advised to record pedometer step count after each walk; reviewed (once per week in month 1 and monthly for months 2–6) to discuss step count and encouraged to continue |
Reference | Randomisation Process | Deviations from the Intended Interventions | Missing Outcome Data | Measurement of Outcomes | Selection of the Reported Result | Overall Quality Assessment |
---|---|---|---|---|---|---|
McDermott 2021 [4] | (+) | (+) | (±) | (+) | (+) | Low |
McDermott 2018 [15] | (+) | (+) | (±) | (+) | (+) | Low |
Tew 2015 [16] | (+) | (+) | (+) | (+) | (+) | Low |
Gardner 2014 [13] | (+) | (+) | (±) | (+) | (−) | High |
McDermott 2013 [14] | (+) | (+) | (+) | (+) | (+) | Low |
McDermott 2014 [18] | (+) | (+) | (±) | (+) | (+) | Low |
Bearne 2022 [27] | (+) | (+) | (+) | (+) | (+) | Low |
Duscha 2018 [29] | (±) | (+) | (+) | (+) | (+) | Low |
Gardner 2011 [30] | (+) | (+) | (+) | (+) | (+) | Low |
Brenner 2020 [33] | (+) | (−) | (−) | (+) | (+) | High |
Collins 2011 [28] | (+) | (+) | (+) | (+) | (+) | Low |
Sandercock 2007 [34] | (+) | (+) | (+) | (+) | (+) | Low |
Collins 2019 [32] | (+) | (+) | (+) | (+) | (+) | Low |
Larsen and Lassen 1966 [31] | (+) | (±) | (+) | (+) | (+) | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanigaimani, S.; Jin, H.; Silva, M.T.; Golledge, J. Network Meta-Analysis of Trials Testing If Home Exercise Programs Informed by Wearables Measuring Activity Improve Peripheral Artery Disease Related Walking Impairment. Sensors 2022, 22, 8070. https://doi.org/10.3390/s22208070
Thanigaimani S, Jin H, Silva MT, Golledge J. Network Meta-Analysis of Trials Testing If Home Exercise Programs Informed by Wearables Measuring Activity Improve Peripheral Artery Disease Related Walking Impairment. Sensors. 2022; 22(20):8070. https://doi.org/10.3390/s22208070
Chicago/Turabian StyleThanigaimani, Shivshankar, Harry Jin, Munasinghe Tharindu Silva, and Jonathan Golledge. 2022. "Network Meta-Analysis of Trials Testing If Home Exercise Programs Informed by Wearables Measuring Activity Improve Peripheral Artery Disease Related Walking Impairment" Sensors 22, no. 20: 8070. https://doi.org/10.3390/s22208070
APA StyleThanigaimani, S., Jin, H., Silva, M. T., & Golledge, J. (2022). Network Meta-Analysis of Trials Testing If Home Exercise Programs Informed by Wearables Measuring Activity Improve Peripheral Artery Disease Related Walking Impairment. Sensors, 22(20), 8070. https://doi.org/10.3390/s22208070