Optimization of Bit Allocation for Spatial Multiplexing in MIMO VLC System with Smartphones
Abstract
:1. Introduction
2. System Model
2.1. VLC Modulation
2.2. Detection of Physical Channels
2.3. Power Allocation
3. WF-Based Bit Allocation
Algorithm 1. WF-based bit allocation algorithm. |
1: Initialization: 2: Calculate for each k 3: While do 4: k’ = arg max() 5: If < 0 then break and output failure; 5: = − 1; 6: 7: 8: end while 9: Output: |
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tariq, F.; Khandaker, M.R.A.; Wong, K.-K.; Imran, M.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef] [PubMed]
- Akyildiz, I.F.; Han, C.; Nie, S. Combating the Distance Problem in the Millimeter Wave and Terahertz Frequency Bands. IEEE Commun. Mag. 2018, 56, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Rusek, F.; Edfors, O. Beyond Massive MIMO: The Potential of Data Transmission with Large Intelligent Surfaces. IEEE Trans. Signal Process. 2018, 66, 2746–2758. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Khalid, A.; Asif, H.M.; Kostromitin, K.I.; Otaibi, S.; Huq, K.M.; Rodriguez, J. Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems. Photonics 2019, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Won, E.T.; Al, E.T. Visible Light Communication: Tutorial; IEEE 802.15; IEEE: Pittsburgh, PA, USA, 2008. [Google Scholar]
- Yesilkaya, A.; Cogalan, T.; Erkucuk, S.; Sadi, Y.; Panayirci, E.; Haas, H.; Vincent, H.P. Physical-Layer Security in Visible Light Communications. In Proceedings of the 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020. [Google Scholar]
- Rajagopal, S.; Electronics, S.; Richard, D.; Intel, R.; Lim, S.K. IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support. IEEE Commun. Mag. 2012, 50, 72–78. [Google Scholar] [CrossRef]
- Gong, C.; Li, S.; Gao, Q.; Xu, Z. Power and Rate Optimization for Visible Light Communication System with Lighting Constraint. IEEE Trans. Signal Process. 2015, 63, 4245–4256. [Google Scholar] [CrossRef]
- Ying, K.; Qian, H.; Baxley, R.J.; Yao, S. Joint Optimization of Precoder and Equalizer in MIMO VLC Systems. IEEE J. Sel. Areas Commun. 2015, 33, 1949–1958. [Google Scholar] [CrossRef]
- Chaleshtori, Z.N.; Ghassemlooy, O.Z.; Eldeeb, H.B.; Uysal, M.; Zvanovec, S. Utilization of an OLED-Based VLC System in Office, Corridor, and Semi-Open Corridor Environments. Sensors 2020, 20, 6869. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.V.; Le-Minh, H.; Pham, A.T. Multi-User Visible Light Communication Broadcast Channels with Zero-Forcing Precoding. IEEE Trans. Consum. 2017, 65, 2509–2521. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-H.; Ko, Y.-C.; Alouini, M.-S. On the Power and Offset Allocation for Rate Adaptation of Spatial Multiplexing in Optical Wireless MIMO Channels. IEEE Trans. Commun. 2013, 61, 1534–1543. [Google Scholar]
- Sun, Z.; Zhu, Y.; Zhang, Y. The DMT-Based Bit-Power Allocation Algorithms in the Visible Light Communication. In Proceedings of the 2012 Second International Conference on Business Computing and Global Informatization, Shanghai, China, 12–14 October 2012; pp. 572–575. [Google Scholar]
- Viñals, R.; Muñoz, O.; Agustín de Dios, A.; Vidal Manzano, J. Multi-User Precoder Designs for RGB Visible Light Communication Systems. Sensors 2020, 20, 6836. [Google Scholar] [CrossRef] [PubMed]
- Saengudomlert, P. Transmit beamforming for line-of-sight MIMO VLC with IM/DD under illumination constraints. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–27 June 2015; pp. 1–4. [Google Scholar]
- John, G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Zhai, Y.; Chi, H.; Tong, J.; Xi, J. Capacity Maximized Linear Precoder Design for Spatial-multiplexing MIMO VLC Systems. IEEE Access 2020, 8, 63901–63909. [Google Scholar] [CrossRef]
- Fath, T.; Haas, H. Digital Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments. IEEE Trans. Commun. 2013, 61, 733–742. [Google Scholar] [CrossRef]
- Kahn, J.M.; Barry, J.R. Wireless Infrared Communications. IEEE Proc. 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Komine, T.; Nakagawa, M. Fundamental Analysis for Visible Light Communication System using LED Lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–152. [Google Scholar]
- Bosi, M.; Goldberg, R.E. Introduction to Digital Audio Coding and Standards; Springer: New York, NY, USA, 2003. [Google Scholar]
Parameters | Value |
---|---|
Transmission distance (cm) | 15 |
Smartphone model | Google Pixel 4a |
Frame rate on transmitter/receiver (fps) | 30/29.6 |
Display pixel value (pixel) | 720 × 1520 |
Number of transmitters | 4 |
Number of receivers | 4 |
Bits per frame | 8 |
Camera resolution (pixel) | 12.2 million |
Smartphone chipset | Snapdragon 730 G |
Smartphone CPU | 2.2 GHz + 1.8 GHz, 64-bitmulti-core processor |
Smartphone RAM | 6 GB |
Levels of PAM2/4/8 | TX1 | RX1 | TX2 | RX2 | TX3 | RX3 | TX4 | RX4 |
---|---|---|---|---|---|---|---|---|
1/1/1 | 89 | 9.2 | 49 | 74.9 | 88 | 10.8 | 49 | 73.7 |
-/-/2 | 113 | 18.2 | 78 | 101.2 | 12 | 21 | 78 | 100.2 |
-/2/3 | 136 | 26.9 | 108 | 128.3 | 136 | 31.2 | 108 | 127.6 |
-/-/4 | 160 | 35.9 | 137 | 154.6 | 160 | 41.3 | 137 | 154.1 |
-/-/5 | 184 | 44.9 | 166 | 180.8 | 183 | 51.1 | 166 | 180.6 |
-/3/6 | 207 | 53.5 | 195 | 207.1 | 207 | 61.2 | 195 | 207.1 |
-/-/7 | 231 | 62.5 | 226 | 235.1 | 231 | 71.4 | 226 | 235.5 |
2/4/8 | 255 | 71.6 | 255 | 255 | 255 | 81.5 | 255 | 255 |
Bit Allocation | Simulation | Real Case |
---|---|---|
[2, 2, 2, 2] | 0.0153 | 0.1303 |
[0, 3, 2, 3] | 0.0048 | 0.1042 |
[2, 3, 0, 3] | 0.0043 | 0.1182 |
[1, 3, 1, 3] | 0.0010 | 0.0959 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-M.; Li, B.-H.; Chiang, C.-C. Optimization of Bit Allocation for Spatial Multiplexing in MIMO VLC System with Smartphones. Sensors 2022, 22, 8117. https://doi.org/10.3390/s22218117
Lee C-M, Li B-H, Chiang C-C. Optimization of Bit Allocation for Spatial Multiplexing in MIMO VLC System with Smartphones. Sensors. 2022; 22(21):8117. https://doi.org/10.3390/s22218117
Chicago/Turabian StyleLee, Chang-Ming, Bo-Hung Li, and Chang-Chin Chiang. 2022. "Optimization of Bit Allocation for Spatial Multiplexing in MIMO VLC System with Smartphones" Sensors 22, no. 21: 8117. https://doi.org/10.3390/s22218117
APA StyleLee, C. -M., Li, B. -H., & Chiang, C. -C. (2022). Optimization of Bit Allocation for Spatial Multiplexing in MIMO VLC System with Smartphones. Sensors, 22(21), 8117. https://doi.org/10.3390/s22218117