Domain Decomposition Spectral Method Applied to Modal Method: Direct and Inverse Spectral Transforms
Abstract
:1. Introduction
2. Methods
2.1. Maxwell’s Equations and Eigenvalue Problem
2.2. Spectral Method and Modal Method
2.3. Domain Decomposition Spectral Method: Direct Transform
2.4. Domain Decomposition Spectral Method: Inverse Transform
3. Applications
3.1. DDSM Applied to a Dipole Field Expansion in the Framework of Modal Method
3.2. Modal Method Applied to a Large Binary Fresnel Plate Zone (Binary FPZ)
3.3. Modal Method and Large Metalens Consisted of Set of Different Cross-Sections Nanorods
3.4. Large-Scale Pachatarnam–Berry Phase-Based (PB) Metalens Simulation
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gander, M.J.; Zhang, H. A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 2019, 61, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Zepeda-Núñez, L.; Demanet, L. Nested domain decomposition with polarized traces for the 2d Helmholtz equation. SIAM J. Sci. Comput. 2018, 40, B942–B981. [Google Scholar]
- Stolk, C.C. A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 2013, 241, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xiang, X. A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 2013, 51, 2331–2356. [Google Scholar] [CrossRef] [Green Version]
- Vouvakis, M.; Zhao, K.; Lee, J.-F. Modeling large almost periodic structures using a non-overlapping domain decomposition method. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, 20–25 June 2004; pp. 343–346. [Google Scholar]
- Dolean, V.; Gander, M.J.; Gerardo-Giorda, L. Optimized schwarz methods for Maxwell?s equations. SIAM J. Sci. Comput. 2009, 31, 2193–2213. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Johnson, S.G. Overlapping domains for topology optimization of large-area metasurfaces. Opt. Express 2019, 27, 32445–32453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.; Sell, D.; Wang, E.W.; Doshay, S.; Edee, K.; Yang, J.; Fan, J.A. High-efficiency, large-area, topology-optimized metasurfaces. Light. Sci. Appl. 2019, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics; Artech House Publishers: Norwood, MA, USA, 2000; Volume 28. [Google Scholar]
- Rumpf, R.C. Simple implementation of arbitrarily shaped total-field/scattered- field regions in finite-difference frequency-domain. Prog. Electromagn. Res. 2012, 36, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Reddy, J.N. Introduction to the Finite Element Method; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Babuska, I.; Szabo, B. On the rates of convergence of the finite element method. Int. J. Numer. Methods Eng. 1982, 18, 323–341. [Google Scholar] [CrossRef]
- Knop, K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am. A 1978, 68, 1206–1210. [Google Scholar] [CrossRef]
- Granet, G.; Guizal, B. Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A 1996, 13, 1019–1023. [Google Scholar] [CrossRef]
- Lalanne, P.; Morris, G.M. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 1996, 13, 779–784. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Granet, G. Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J. Opt. Soc. Am. A 1999, 16, 2510–2516. [Google Scholar] [CrossRef]
- Lalanne, P. Numerical performance of finite-difference modal methods for the electromagnetic analysis of one- dimensional lamellar gratings. J. Opt. Soc. Am. A 2000, 17, 1033–1042. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J. Chebyshev and Fourier Spectral Methods, 2nd ed.; Dover Books on Mathematics; Dover Publications: Mineola, NY, USA, 2013; ISBN 9780486141923. [Google Scholar]
- Edee, K.; Plumey, J.-P.; Guizal, B. Unified Numerical Formalism of Modal Methods in Computational Electromagnetics and Latest Advances: Applications in Plasmonics. In Advances in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 197, Chapter 2. [Google Scholar]
- Semenikhin, I. Improving accuracy of the numerical solution of Maxwell’s equations by processing edge singularities of the electromagnetic field. J. Comput. Phys. 2021, 441, 110440. [Google Scholar] [CrossRef]
- Hammond, A.M.; Oskooi, A.; Chen, M.; Lin, Z.; Johnson, S.G.; Ralph, S.E. High-performance hybrid time/frequency-domain topology optimization for large-scale photonics inverse design. Opt. Express 2022, 30, 4467–4491. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, V.; Pestourie, R.; Johnson, S.G. Topology optimization of free-form large-area metasurfaces. Opt. Express 2019, 27, 15765–15775. [Google Scholar] [CrossRef] [Green Version]
- Further Computational Details about the Method’s Implementation along with a Version of the Code. Available online: photonicsnum.com (accessed on 26 September 2022).
- Plumey, J.-P.; Edee, K.; Granet, G. Modal expansion for the 2D Greens function in a non orthogonal coordinate system. Prog. Electromagn. Res. 2006, 59, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Silberstein, E.; Lalanne, P.; Hugonin, J.-P.; Cao, Q. Use of gratings in integrated optics. J. Opt. Soc. Am. A 2001, 18, 2865–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugonin, J.P.; Lalanne, P. Perfectly matched layers as nonlinear coordinate transforms: A generalized formalization. J. Opt. Soc. Am. A 2005, 22, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Edee, K.; Granet, G.; Plumey, J.-P. Complex coordinate implementation in the curvilinear coordinate method: Application to plane-wave diffraction by nonperiodic rough surfaces. J. Opt. Soc. Am. A 2007, 24, 1097–1102. [Google Scholar] [CrossRef]
- Bérenger, J. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Sacks, Z.S.; Kingsland, D.M.; Lee, R.; Lee, J.-F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 1995, 43, 1460–1463. [Google Scholar] [CrossRef]
- Chew, W.C.; Weedon, W.H. A 3D perfectly matched medium from modified Maxwell?s equations with stretched coordinates. Microw. Opt. Technol. Lett. 1994, 7, 599–604. [Google Scholar] [CrossRef]
- Chew, W.C.; Jin, J.M.; Michielssen, E. Complex coordinate stretching as a generalized absorbing boundary condition. Microw. Opt. Technol. Lett. 1997, 15, 363–369. [Google Scholar] [CrossRef]
- Teixeira, F.L.; Chew, W.C. Differential forms, metrics, and 435 the reflectionless absorption of electromagnetic waves. J. Electromagn. Waves Appl. 1999, 13, 665–686. [Google Scholar] [CrossRef]
9 | 10 | 11 | 12 | |
---|---|---|---|---|
computation times (s) | 35.07 | 57.29 | 90.77 | 152.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edee, K.; Granet, G.; Paladian, F.; Bonnet, P.; Al Achkar, G.; Damaj, L.; Plumey, J.-P.; Larciprete, M.C.; Guizal, B. Domain Decomposition Spectral Method Applied to Modal Method: Direct and Inverse Spectral Transforms. Sensors 2022, 22, 8131. https://doi.org/10.3390/s22218131
Edee K, Granet G, Paladian F, Bonnet P, Al Achkar G, Damaj L, Plumey J-P, Larciprete MC, Guizal B. Domain Decomposition Spectral Method Applied to Modal Method: Direct and Inverse Spectral Transforms. Sensors. 2022; 22(21):8131. https://doi.org/10.3390/s22218131
Chicago/Turabian StyleEdee, Kofi, Gérard Granet, Francoise Paladian, Pierre Bonnet, Ghida Al Achkar, Lana Damaj, Jean-Pierre Plumey, Maria Cristina Larciprete, and Brahim Guizal. 2022. "Domain Decomposition Spectral Method Applied to Modal Method: Direct and Inverse Spectral Transforms" Sensors 22, no. 21: 8131. https://doi.org/10.3390/s22218131
APA StyleEdee, K., Granet, G., Paladian, F., Bonnet, P., Al Achkar, G., Damaj, L., Plumey, J. -P., Larciprete, M. C., & Guizal, B. (2022). Domain Decomposition Spectral Method Applied to Modal Method: Direct and Inverse Spectral Transforms. Sensors, 22(21), 8131. https://doi.org/10.3390/s22218131