Comparison of the Capacitance of a Cyclically Fatigued Stretch Sensor to a Non-Fatigued Stretch Sensor When Performing Static and Dynamic Foot-Ankle Motions
Abstract
:1. Introduction
1.1. Overview of the Human Foot-Ankle Complex
Range of Motion (ROM) of the Human Ankle Joint
1.2. Quasi-Static and Fatigue Testing of StretchSense™ StretchFABRIC Sensors
2. Materials and Methods
2.1. Quasi-Static Tests
2.2. Fatigue Tests
2.3. Participant Trials
3. Results
3.1. Quasi-Static Testing
3.2. Fatigue Testing
3.3. Participant Trials
3.3.1. Dorsiflexion
3.3.2. Plantarflexion
3.3.3. Eversion
3.3.4. Inversion
3.3.5. Gait Trials
4. Discussion
5. Conclusions
- Under quasi-static testing conditions, the strain of the material and the capacitive output of the stretch sensor are linearly correlated.
- Under HCF testing conditions, the strain of the material and the capacitive output are poorly to moderately correlated.
- When comparing the fatigued sensor to an unfatigued sensor during static and dynamic movements, the capacitance of the fatigued sensor consistently exhibits an upwards drift.
- More testing is needed to determine whether the upwards drift will stabilize once the polymers comprising the sensors have stabilized following cyclic softening.
- The results of these experiments suggest that the data collected from sensors “out of the box” may not be reliable, and that prestretching of the sensors by the manufacturer or end user may be required.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkaya, G.; Jung, H.R.; Jeong, I.S.; Choi, M.R.; Shin, M.Y.; Lin, X.; Heo, W.S.; Kim, M.S.; Kim, E.; Lee, K.-K. Three-Dimensional Motion Capture Data during Repetitive Overarm Throwing Practice. Sci. Data 2018, 5, 180272. [Google Scholar] [CrossRef] [Green Version]
- Vercelli, S.; Sartorio, F.; Bravini, E.; Ferriero, G. DrGoniometer: A Reliable Smartphone App for Joint Angle Measurement. Br. J. Sport. Med. 2017, 51, 1703–1704. [Google Scholar] [CrossRef]
- Cunha, A.B.; Babik, I.; Harbourne, R.; Cochran, N.J.; Stankus, J.; Szucs, K.; Lobo, M.A. Assessing the Validity and Reliability of a New Video Goniometer App for Measuring Joint Angles in Adults and Children. Arch. Phys. Med. Rehabil. 2020, 101, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Shemelya, C.; Cedillos, F.; Aguilera, E.; Espalin, D.; Muse, D.; Wicker, R.; MacDonald, E. Encapsulated Copper Wire and Copper Mesh Capacitive Sensing for 3-D Printing Applications. IEEE Sens. J. 2015, 15, 1280–1286. [Google Scholar] [CrossRef]
- Carradero Santiago, C.; Randall-Posey, C.; Popa, A.-A.; Duggen, L.; Vuksanovich, B.; Cortes, P.; Macdonald, E. 3D Printed Elastomeric Lattices with Embedded Deformation Sensing. IEEE Access 2020, 8, 41394–41402. [Google Scholar] [CrossRef]
- Loh, L.Y.W.; Gupta, U.; Wang, Y.; Foo, C.C.; Zhu, J.; Lu, W.F. 3D Printed Metamaterial Capacitive Sensing Array for Universal Jamming Gripper and Human Joint Wearables. Adv. Eng. Mater. 2021, 23, 2001082. [Google Scholar] [CrossRef]
- Ragolia, M.A.; Lanzolla, A.M.L.; Percoco, G.; Stano, G.; Di Nisio, A. Thermal Characterization of New 3D-Printed Bendable, Coplanar Capacitive Sensors. Sensors 2021, 21, 6324. [Google Scholar] [CrossRef]
- Saucier, D.; Luczak, T.; Nguyen, P.; Davarzani, S.; Peranich, P.; Ball, J.E.; Burch, R.F.; Smith, B.K.; Chander, H.; Knight, A.; et al. Closing the Wearable Gap—Part II: Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements. Sensors 2019, 19, 3509. [Google Scholar] [CrossRef] [Green Version]
- Chander, H.; Stewart, E.; Saucier, D.; Nguyen, P.; Luczak, T.; Ball, J.E.; Knight, A.C.; Smith, B.K.; Burch V, R.F.; Prabhu, R.K. Closing the Wearable Gap—Part III: Use of Stretch Sensors in Detecting Ankle Joint Kinematics During Unexpected and Expected Slip and Trip Perturbations. Electronics 2019, 8, 1083. [Google Scholar] [CrossRef] [Green Version]
- Saucier, D.; Davarzani, S.; Turner, A.; Luczak, T.; Nguyen, P.; Carroll, W.; Burch V, R.F.; Ball, J.E.; Smith, B.K.; Chander, H.; et al. Closing the Wearable Gap—Part IV: 3D Motion Capture Cameras Versus Soft Robotic Sensors Comparison of Gait Movement Assessment. Electronics 2019, 8, 1382. [Google Scholar] [CrossRef]
- Talegaonkar, P.; Saucier, D.; Carroll, W.; Peranich, P.; Parker, E.; Middleton, C.; Davarzani, S.; Turner, A.; Persons, K.; Casey, L.; et al. Closing the Wearable Gap-Part VII: A Retrospective of Stretch Sensor Tool Kit Development for Benchmark Testing. Electronics 2020, 9, 1457. [Google Scholar] [CrossRef]
- Carroll, W.; Turner, A.; Talegaonkar, P.; Parker, E.; Middleton, J.C.; Peranich, P.; Saucier, D.; Burch, R.F.; Ball, J.E.; Smith, B.K.; et al. Closing the Wearable Gap–Part IX: Validation of an Improved Ankle Motion Capture Wearable. IEEE Access 2021, 9, 114022–114036. [Google Scholar] [CrossRef]
- Parker, E.; Freeman, C.; Persons, K.; Burch, R.; Ball, J.; Saucier, D.; Middleton, C.; Peranich, P.; Chander, H.; Knight, A.; et al. Deterioration of Textile vs. Electronic Components over Time in Athletic Wearable Devices. In Proceedings of the Smart Biomedical and Physiological Sensor Technology XVIII, Online, 12–16 April 2021; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11757, p. 1175702. [Google Scholar]
- Persons, A.K.; Ball, J.E.; Freeman, C.; Macias, D.M.; Simpson, C.L.; Smith, B.K.; Burch V, R.F. Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities. Materials 2021, 14, 4070. [Google Scholar] [CrossRef] [PubMed]
- Lam Po Tang, S. Wearable Sensors for Sports Performance. In Textiles for Sportswear; Shishoo, R., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2015; pp. 169–196. [Google Scholar]
- Luczak, T.; Saucier, D.; Burch V, R.F.; Ball, J.E.; Chander, H.; Knight, A.; Wei, P.; Iftekhar, T. Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle. Electronics 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- O’Quigley, C.; Sabourin, M.; Coyle, S.; Connolly, J.; Condall, J.; Curran, K.; Corcoran, B.; Diamond, D. Characteristics of a Piezo-Resistive Fabric Stretch Sensor Glove for Home-Monitoring of Rheumatoid Arthritis. In Proceedings of the 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops, Zurich, Switzerland, 16–19 June 2014; pp. 23–26. [Google Scholar]
- Faber, M.; Andersen, M.H.; Sevel, C.; Thorborg, K.; Bandholm, T.; Rathleff, M. The Majority Are Not Performing Home-Exercises Correctly Two Weeks after Their Initial Instruction—An Assessor-Blinded Study. PeerJ 2015, 3, e1102. [Google Scholar] [CrossRef]
- Huang, X. Stretchable Health Monitoring Devices/Sensors. In Flexible and Stretchable Medical Devices; Takei, K., Ed.; Wiley-VCH: Weinheim, Germany, 2018; pp. 323–349. [Google Scholar]
- Park, J.W.; Kim, T.; Kim, D.; Hong, Y.; Gong, H.S. Measurement of Finger Joint Angle Using Stretchable Carbon Nanotube Strain Sensor. PLoS ONE 2019, 14, e0225164. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Lin, C.-Y.; Tsai, M.-J.; Chuang, T.-Y.; Lee, O.K.-S. Wearable Motion Sensor Device to Facilitate Rehabilitation in Patients with Shoulder Adhesive Capsulitis: Pilot Study to Assess Feasibility. J. Med. Internet Res. 2020, 22, e17032. [Google Scholar] [CrossRef]
- Chander, H.; Burch, R.F.; Talegaonkar, P.; Saucier, D.; Luczak, T.; Ball, J.E.; Turner, A.; Kodithuwakku Arachchige, S.N.K.; Carroll, W.; Smith, B.K.; et al. Wearable Stretch Sensors for Human Movement Monitoring and Fall Detection in Ergonomics. Int. J. Environ. Res. Public Health 2020, 17, 3554. [Google Scholar] [CrossRef] [PubMed]
- Bowman, M. Osteochondral Lesions of the Talus and Occult Fractures of the Foot and Ankle. In Baxter’s the Foot and Ankle in Sport; Porter, D.A., Schon, L.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 293–338. [Google Scholar]
- McClay, I.S.; Robinson, J.R.; Andriacchi, T.P.; Frederick, E.C.; Gross, T.; Martin, P.; Valiant, G.; Williams, K.R.; Cavanagh, P.R. A Profile of Ground Reaction Forces in Professional Basketball. J. Appl. Biomech. 1994, 10, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Brockett, C.L.; Chapman, G.J. Biomechanics of the Ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef]
- Thompson, J.C. Netter’s Concise Orthopaedic Anatomy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D.M.; Haufe, F.; Wood, R.J.; Walsh, C.J. Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Adv. Mater. Technol. 2017, 2, 1700136. [Google Scholar] [CrossRef] [Green Version]
- Petrie, A.; Watson, P. Statistics for Veterinary and Animal Science, 3rd ed.; Wiley-Blackwell: New York, NY, USA, 2013. [Google Scholar]
- Heinemann, P.; Kasperski, M. Damping Induced by Walking and Running. Procedia Eng. 2017, 199, 2826–2831. [Google Scholar] [CrossRef]
- Clayton, J.A.; Tannenbaum, C. Reporting Sex, Gender, or Both in Clinical Research? JAMA 2016, 316, 1863–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boland, C.S. Quantifying the Contributing Factors toward Signal Fatigue in Nanocomposite Strain Sensors. ACS Appl. Polym. Mater. 2020, 2, 3474–3480. [Google Scholar] [CrossRef]
- Basquin, O.H. The Exponential Law of Endurance Tests. Proc. Am. Soc. Test. Mater. 1910, 10, 625–630. [Google Scholar]
- Stephens, R.I.; Fatemi, A.; Stephens, R.R.; Fuchs, H.O. Metal Fatigue in Engineering, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Kun, F.; Carmona, H.A.; Andrade, J.S.; Herrmann, H.J. Universality behind Basquin’s Law of Fatigue. Phys. Rev. Lett. 2008, 100, 094301. [Google Scholar] [CrossRef] [PubMed]
- Persons, A.K. Electromechanical Fatigue Properties of Dielectric Elastomer Stretch Sensors under Orthopaedic Loading Conditions. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2022. [Google Scholar]
Speed | Data | p-Value | Decision |
---|---|---|---|
0.6 mm/s | |||
Capacitance | 1.11022 × 10−16 | p < 0.05; reject null; data are not normally distributed | |
Strain | 0 | p < 0.05; reject null; data are not normally distributed | |
1.2 mm/s | |||
Capacitance | 1.68389 × 10−11 | p < 0.05; reject null; data are not normally distributed | |
Strain | 3.33067 × 10−16 | p < 0.05; reject null; data are not normally distributed | |
2.4 mm/s | |||
Capacitance | 3.00829 × 10−6 | p < 0.05; reject null; data are not normally distributed | |
Strain | 1.42418 × 10−10 | p < 0.05; reject null; data are not normally distributed |
Sensor | Data | p-Value | Decision |
---|---|---|---|
1 | |||
Capacitance | 0 | p < 0.05; reject null; data are not normally distributed | |
Strain | 0 | p < 0.05; reject null; data are not normally distributed | |
2 | |||
Capacitance | 0 | p < 0.05; reject null; data are not normally distributed | |
Strain | 0 | p < 0.05; reject null; data are not normally distributed |
Speed | Strain | Capacitance | |
---|---|---|---|
0.6 mm/s | Spearman’s Correlation | Spearman’s Correlation | |
Strain | 1 | 0.99973 | |
Capacitance | 0.99973 | 1 | |
1.2 mm/s | |||
Strain | 1 | 0.99982 | |
Capacitance | 0.99982 | 1 | |
2.4 mm/s | |||
Strain | 1 | 0.9994 | |
Capacitance | 0.9994 | 1 |
Sensor | Strain | Capacitance | |
---|---|---|---|
1 | Spearman’s Correlation | Spearman’s Correlation | |
Strain | 1 | 0.75137 | |
Capacitance | 0.75137 | 0.99998 | |
2 | |||
Strain | 1 | 0.0169 | |
Capacitance | 0.0169 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persons, A.K.; Middleton, C.; Parker, E.; Carroll, W.; Turner, A.; Talegaonkar, P.; Davarzani, S.; Saucier, D.; Chander, H.; Ball, J.E.; et al. Comparison of the Capacitance of a Cyclically Fatigued Stretch Sensor to a Non-Fatigued Stretch Sensor When Performing Static and Dynamic Foot-Ankle Motions. Sensors 2022, 22, 8168. https://doi.org/10.3390/s22218168
Persons AK, Middleton C, Parker E, Carroll W, Turner A, Talegaonkar P, Davarzani S, Saucier D, Chander H, Ball JE, et al. Comparison of the Capacitance of a Cyclically Fatigued Stretch Sensor to a Non-Fatigued Stretch Sensor When Performing Static and Dynamic Foot-Ankle Motions. Sensors. 2022; 22(21):8168. https://doi.org/10.3390/s22218168
Chicago/Turabian StylePersons, Andrea Karen, Carver Middleton, Erin Parker, Will Carroll, Alana Turner, Purva Talegaonkar, Samaneh Davarzani, David Saucier, Harish Chander, John E. Ball, and et al. 2022. "Comparison of the Capacitance of a Cyclically Fatigued Stretch Sensor to a Non-Fatigued Stretch Sensor When Performing Static and Dynamic Foot-Ankle Motions" Sensors 22, no. 21: 8168. https://doi.org/10.3390/s22218168
APA StylePersons, A. K., Middleton, C., Parker, E., Carroll, W., Turner, A., Talegaonkar, P., Davarzani, S., Saucier, D., Chander, H., Ball, J. E., Elder, S. H., Simpson, C. L., Macias, D., & Burch V., R. F. (2022). Comparison of the Capacitance of a Cyclically Fatigued Stretch Sensor to a Non-Fatigued Stretch Sensor When Performing Static and Dynamic Foot-Ankle Motions. Sensors, 22(21), 8168. https://doi.org/10.3390/s22218168