Toward an Automatic Assessment of Cognitive Dysfunction in Relapsing–Remitting Multiple Sclerosis Patients Using Eye Movement Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Description of the Eye Movement Tests
2.2.1. Visual Guided Saccade Test
2.2.2. Antisaccade Test
2.2.3. Smooth Pursuit Test
3. Results
3.1. Data Analysis Methods
3.2. Comparison between Healthy Controls and MS Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MS | Multiple Sclerosis |
EDSS | Expanded Disability Status Scale |
References
- Benito-León, J.; Morales, J.; Rivera-Navarro, J.; Mitchell, A. A review about the impact of multiple sclerosis on health-related quality of life. Disabil. Rehabil. 2003, 25, 1291–1303. [Google Scholar] [CrossRef]
- Mitchell, A.; Benito-León, J.; González, J.; Rivera-Navarro, J. Quality of life and its assessment in multiple sclerosis: Integrating physical and psychological components of wellbeing. Lancet. Neurol. 2005, 4, 556–566. [Google Scholar] [CrossRef]
- Morales-Gonzáles, J.; Benito-León, J.; Rivera-Navarro, J.; Mitchell, A. A systematic approach to analyse health-related quality of life in multiple sclerosis: The GEDMA study. Mult. Scler. 2004, 10, 47–54. [Google Scholar] [CrossRef]
- Rivera-Navarro, J.; Benito-León, J.; Oreja-Guevara, C.; Pardo, J.; Dib, W.; Orts, E.; Belló, M. Burden and health-related quality of life of Spanish caregivers of persons with multiple sclerosis. Mult. Scler. 2009, 15, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Chisari, C.G.; Matta, M. Eye movement abnormalities in multiple sclerosis: Pathogenesis, modeling, and treatment. Front. Neurol. 2018, 9, 1664–2295. [Google Scholar] [CrossRef] [PubMed]
- Fielding, J.; Kilpatrick, T.; Millist, L.; White, O. Antisaccade performance in patients with multiple sclerosis. Cortex 2009, 45, 900–903. [Google Scholar] [CrossRef]
- Fielding, J.; Kilpatrick, T.; Millist, L.; White, O. Control of visually guided saccades in multiple sclerosis: Disruption to higher-order processes. Neuropsychologia 2009, 47, 1647–1653. [Google Scholar] [CrossRef]
- Olazarán, J.; Cruz, I.; Benito-León, J.; Morales, J.M.; Duque, P.; Rivera-Navarro, J. Cognitive dysfunction in multiple sclerosis: Methods and prevalence from the GEDMA Study. Eur. Neurol. 2009, 61, 87–93. [Google Scholar] [CrossRef]
- Julian, L.J. Cognitive functioning in multiple sclerosis. Neurol. Clin. 2011, 29, 507–525. [Google Scholar] [CrossRef]
- Rao, S.M.; Leo, G.J.; Ellington, L.; Nauertz, T.; Bernardin, L.; Unverzagt, F. Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology 1991, 41, 692–696. [Google Scholar] [CrossRef]
- Rao, S.M.; Reingold, S.C.; Ron, M.A.; Lyon-Caen, O.; Comi, G. Workshop on Neurobehavioral Disorders in Multiple Sclerosis. Arch. Neurol. 1992, 50, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M.; Reingold, S.C.; Ron, M.A.; Lyon-Caen, O.; Comi, G. Minimal neuropsychological assessment of MS patients: A consensus approach. Arch. Neurol. 2002, 16, 381–397. [Google Scholar]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrazabal, A.J.; Cena, C.G.; Martínez, C.E. Video-oculography eye tracking towards clinical applications: A review. Comput. Biol. Med. 2019, 108, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, C.K.; Beaudry-Richard, A.; Bensinger, E.; Theis, J.; Green, A.J. Methods to assess ocular motor dysfunction in multiple sclerosis. J. Neuro-Ophthalmol. 2018, 38, 488–493. [Google Scholar] [CrossRef]
- Fielding, J.; Clough, M.; Beh, S.; Millist, L.; Sears, D.; Frohman, A.N.; Lizak, N.; Lim, J.; Kolbe, S.; Rennaker, R.L.; et al. Ocular motor signatures of cognitive dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2015, 11, 637–645. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Neurology 2018, 17, 162–173. [Google Scholar] [CrossRef]
- García Cena, C.E.; Gómez Andrés, D.; Pulido Valdeolivas, I. Measurement and analysis of eye movements performance to predict healthy brain aging. IEEE Access 2020, 8, 87201–87213. [Google Scholar] [CrossRef]
- García Cena, C.E.; Gómez Andrés, D.; Pulido Valdeolivas, I.; Acebrón López, R.; Espinoza Gómez, R.; Ramos Vázquez, S. Device for Synchronized Measure of Ocular and Cephalic Movements. European Patent EP3241488A1, 8 November 2017. [Google Scholar]
- Findlay, J.M.; Walker, R. A model of saccade generation based on parallel processing and competitive inhibition. Behav. Brain Sci. 1999, 22, 661–674. [Google Scholar] [CrossRef]
- Leigh, R.J.; Zee, D. The Neurology of Eye Movements, 5th ed.; Contemporary Neurology Series; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Jernajczyk, W.; Sobańska, A.; Czerwosz, L.; Szatkowska, E. The influence of age and gender on the latency of eye movement in healthy humans. J. Physiol. Pharmacol. 2005, 56, 93–100. [Google Scholar]
- Ettinger, U.; Antonova, E.; Crawford, T.J.; Mitterschiffthaler, M.T.; Goswani, S.; Sharma, T.; Kumari, V. Structural neural correlates of prosaccade and antisaccade eye movements in healthy humans. NeuroImage 2005, 24, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Jóhannesson, Ó.I.; Tagu, J.; Kristjánsson, Á. Asymmetries of the visual system and their influence on visual performance and oculomotor dynamics. Eur. J. Neurosci. 2018, 48, 3426–3445. [Google Scholar] [CrossRef] [PubMed]
- McDowell, J.E.; Dyckman, K.A.; Austin, B.P.; Clementz, B.A. Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain Cogn. 2008, 68, 255–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagnese, S.; Gordon, H.M.; Jackson, C.; Smith, J.; Tognella, P.; Jethwa, N.; Sherratt, R.M.; Morgan, M.Y. Disruption of smooth pursuit eye movements in cirrhosis: Relationship to hepatic encephalopathy and its treatment. Hepatology 2005, 42, 772–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, R.A. Finding Optimal Normalizing Transformations via bestNormalize. R Journal 2021, 13, 310–329. [Google Scholar] [CrossRef]
- Graves, J.S.; Oertel, F.C.; Van der Walt, A.; Collorone, S.; Sotirchos, E.S.; Pihl-Jensen, G.; Albrecht, P.; Yeh, E.A.; Saidha, S.; Frederiksen, J.; et al. Leveraging Visual Outcome Measures to Advance Therapy Development in Neuroimmunologic Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, 1–17. [Google Scholar] [CrossRef]
- Pardo, G.; Coates, S.; Okuda, D.T. Outcome measures assisting treatment optimization in multiple sclerosis. J. Neurol. 2021, 269, 1–16. [Google Scholar] [CrossRef]
- Meca-Lallana, V.; Gascón-Giménez, F.; Ginestal-López, R.C.; Higueras, Y.; Téllez-Lara, N.; Carreres-Polo, J.; Eichau-Madueño, S.; Romero-Imbroda, J.; Vidal-Jordana, Á.; Pérez-Miralles, F. Cognitive impairment in multiple sclerosis: Diagnosis and monitoring. Neurol. Sci. 2021, 42, 5183–5193. [Google Scholar] [CrossRef]
- Wolf, C.; Lappe, M. Vision as oculomotor reward: Cognitive contributions to the dynamic control of saccadic eye movements. Cogn. Neurodyn. 2021, 15, 547–568. [Google Scholar] [CrossRef]
- Wong, O.W.; Chan, A.Y.; Wong, A.; Lau, C.K.; Yeung, J.H.; Mok, V.C.; Lam, L.C.; Chan, S. Eye movement parameters and cognitive functions in Parkinson’s disease patients without dementia. Park. Relat. Disord. 2018, 52, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Opwonya, J.; Doan, D.N.T.; Kim, S.G.; Kim, J.I.; Ku, B.; Kim, S.; Park, S.; Kim, J.U. Saccadic Eye Movement in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2021, 32, 193–227. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.M.; Fritz, N.E.; Therrien, A.S. Cerebellar Dysfunction in Multiple Sclerosis: Considerations for Research and Rehabilitation Therapy. Neurorehabilit. Neural Repair 2022, 36, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Hutton, S.B.; Ettinger, U. The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology 2006, 43, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Leigh, R.J.; Kennard, C. Using saccades as a research tool in the clinical neurosciences. Brain 2004, 127, 460–477. [Google Scholar] [CrossRef]
- Spengler, D.; Trillenberg, P.; Sprenger, A.; Nagel, M.; Kordon, A.; Junghanns, K.; Heide, W.; Arolt, V.; Hohagen, F.; Lencer, R. Evidence from increased anticipation of predictive saccades for a dysfunction of fronto-striatal circuits in obsessive–compulsive disorder. Psychiatry Res. 2006, 143, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Coe, B.C.; Trappenberg, T.; Munoz, D.P. Modeling saccadic action selection: Cortical and basal ganglia signals coalesce in the superior colliculus. Front. Syst. Neurosci. 2019, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the Basal Ganglia in the Control of Purposive Saccadic Eye Movements. Physiol. Rev. 2000, 80, 954–978. [Google Scholar] [CrossRef] [Green Version]
- Hikosaka, O. Basal ganglia mechanisms of reward-oriented eye movement. Ann. N. Y. Acad. Sci. 2007, 1104, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Sumner, P. Determinants of saccade latency. Oxf. Handb. Eye Mov. 2011, 1104, 413–424. [Google Scholar]
- Frei, K. Abnormalities of smooth pursuit in Parkinson’s disease: A systematic review. Clin. Park. Relat. Disord. 2021, 4, 100085. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Miura, K.; Kasai, K.; Hashimoto, R. Eye movement characteristics in schizophrenia: A recent update with clinical implications. Neuropsychopharmacol. Rep. 2020, 40, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Shemesh, A.A.; Zee, D.S. Eye movement disorders and the cerebellum. J. Clin. Neurophysiol. 2019, 36, 405. [Google Scholar] [CrossRef]
- Robinson, D.A. The neurophysiology of pursuit. Prog. Brain Res. 2022, 267, 423–435. [Google Scholar]
- Roura, E.; Maclair, G.; Andorrà, M.; Juanals, F.; Pulido-Valdeolivas, I.; Saiz, A.; Blanco, Y.; Sepulveda, M.; Llufriu, S.; Martínez-Heras, E.; et al. Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients. Neuroimage Clin. 2021, 30, 102653. [Google Scholar] [CrossRef] [PubMed]
- Weinstock-Guttman, B.; Servillo, G.; Renard, D.; Taieb, G.; Labauge, P.; Bastide, S.; Zorzon, M.; Castelnovo, G. TBedside Tested Ocular Motor Disorders in Multiple Sclerosis Patients. Mult. Scler. Int. 2014, 2014, 1–4. [Google Scholar]
- Kumar, W.A.; Constantinescu, C.S.; Proudlock, F.A.; Thomas, M.G.; McLean, R.J.; Gottlob, I. Analysis of Eye Movement Recordings in Multiple Sclerosis. Investig. Ophthalmol. and Vis. Sci. 2010, 51, 2542–2552. [Google Scholar]
- Bijvank, J.N.; Strijbis, E.; Nauta, I.; Kulik, S.; Balk, L.; Stam, C.; Hillebrand, A.; Geurts, J.; Uitdehaag, B.; van Rijn, L.; et al. Impaired saccadic eye movements in multiple sclerosis are related to altered functional connectivity of the oculomotor brain network. Neuroimage Clin. 2021, 32, 102848. [Google Scholar] [CrossRef] [PubMed]
- Pavisian, B.; Patel, V.; Feinstein, A. Cognitive mediated eye movements during the SDMT reveal the challenges with processing speed faced by people with MS. BMC Neurol. 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielding, J.; Kilpatrick, T.; Millist, L.; Clough, M.; White, O. Longitudinal Assessment of Antisaccades in Patients with Multiple Sclerosis. PLoS ONE 2012, 7, e30475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clough, M.; Mitchell, L.; Millist, L.; Lizak, N.; Beh, S.; Frohman, T.C.; Frohman, E.M.; White, O.B.; Fielding, J. Ocular motor measures of cognitive dysfunction in multiple sclerosis II: Working memory. J. Neurol. 2015, 262, 1138–1147. [Google Scholar] [CrossRef]
- Bräu, H.; Ulrich, G.; Kriebitzsch, R.; Baum, K. Quantifying functional deficits in patients with multiple sclerosis using a computer-assisted. EEG-EMG Zeitschrift fur Elektroenzephalographie Elektromyographie und Verwandte Gebiete 1989, 20, 84–87. [Google Scholar] [PubMed]
- De Santi, L.; Lanzafame, P.; Spano, B.; D’Aleo, G.; Bramanti, A.; Bramanti, P.; Marino, S. Pursuit ocular movements in multiple sclerosis: A video-based eye-tracking study. Neurol. Sci. 2011, 32, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Fielding, J.; Kilpatrick, T.; Millist, L.; White, O. Multiple sclerosis: Cognition and saccadic eye movements. J. Neurol. Sci. 2009, 277, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, G.O.; Sigrid, A.; Harbo, H.F.; Laeng, B.; Sowa, P.; Damangir, S.; Nilsen, K.B.; Etholm, L.; Tønnesen, S.; Kerty, E.; et al. Eye and hand motor interactions with the Symbol Digit Modalities Test in early multiple sclerosis. Mult. Scler. Relat. Disord. 2015, 4, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.; MacAskill, M. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol. 2013, 9, 74–85. [Google Scholar] [CrossRef]
Group | Sample Size | Age | EDSS | Age at Diagnosis | Disease Duration |
---|---|---|---|---|---|
Controls | 43 | ― | ― | ― | |
Patients | 41 |
Mode | Visual Field (°) | Duration (s) | Repetitions |
---|---|---|---|
Horizontal | 5, 10, 20 | 36 | 22 |
Vertical | 5, 12 | 24 | 12 |
Mode | Visual Field (°) | Duration (s) | Repetitions |
---|---|---|---|
Horizontal | 5, 10, 20 | 36 | 22 |
Vertical | 5, 12 | 24 | 12 |
Mode | Duration (s) | Repetitions |
---|---|---|
Horizontal | 8 | 3 |
Vertical | 8 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Cena, C.E.; Gómez-Andrés, D.; Pulido-Valdeolivas, I.; Sánchez-Seco, V.G.; Domingo-Santos, A.; Moreno-García, S.; Benito-León, J. Toward an Automatic Assessment of Cognitive Dysfunction in Relapsing–Remitting Multiple Sclerosis Patients Using Eye Movement Analysis. Sensors 2022, 22, 8220. https://doi.org/10.3390/s22218220
García Cena CE, Gómez-Andrés D, Pulido-Valdeolivas I, Sánchez-Seco VG, Domingo-Santos A, Moreno-García S, Benito-León J. Toward an Automatic Assessment of Cognitive Dysfunction in Relapsing–Remitting Multiple Sclerosis Patients Using Eye Movement Analysis. Sensors. 2022; 22(21):8220. https://doi.org/10.3390/s22218220
Chicago/Turabian StyleGarcía Cena, Cecilia E., David Gómez-Andrés, Irene Pulido-Valdeolivas, Victoria Galán Sánchez-Seco, Angela Domingo-Santos, Sara Moreno-García, and Julián Benito-León. 2022. "Toward an Automatic Assessment of Cognitive Dysfunction in Relapsing–Remitting Multiple Sclerosis Patients Using Eye Movement Analysis" Sensors 22, no. 21: 8220. https://doi.org/10.3390/s22218220
APA StyleGarcía Cena, C. E., Gómez-Andrés, D., Pulido-Valdeolivas, I., Sánchez-Seco, V. G., Domingo-Santos, A., Moreno-García, S., & Benito-León, J. (2022). Toward an Automatic Assessment of Cognitive Dysfunction in Relapsing–Remitting Multiple Sclerosis Patients Using Eye Movement Analysis. Sensors, 22(21), 8220. https://doi.org/10.3390/s22218220