Analysis of IoT-Related Ergonomics-Based Healthcare Issues Using Analytic Hierarchy Process Methodology
Abstract
:1. Introduction
1.1. Background
1.2. Problem
1.3. Proposed Solution
1.4. Organization of the Paper
2. Related Works
3. Methodology
Analytic Hierarchy Process
4. Proposed Model
4.1. Excruciating Issues
4.1.1. Lumbago (Lower Backache)
4.1.2. Cervicalgia (Neck Ache)
4.1.3. Shoulder Pain
4.2. Eye-Ear-Nerve Issues
4.2.1. Digital Eye Strain
4.2.2. Hearing Impairment
4.2.3. Carpal Tunnel Syndrome
4.3. Psychosocial Issues
4.3.1. Distress
4.3.2. Exhaustion
4.3.3. Depression
4.4. Persistent Issues
4.4.1. Obesity
4.4.2. High Blood Pressure
4.4.3. Hyperglycemia
5. Results and Discussion
λmax = (λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12)/12 = 12.830 |
Consistency Index = [λmax − n]/[n − 1] |
C. Index = (12.830 − 12)/(12 − 1) = 0.830/11 = 0.0755 |
6. Conclusions
6.1. Concluding Remarks
6.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Abachi, H.; Muhammad, G. The impact of m-learning technology on students and educators. Comput. Hum. Behav. 2014, 30, 491–496. [Google Scholar] [CrossRef]
- Reiman, A.; Kaivo-Oja, J.; Parviainen, E.; Takala, E.-P.; Lauraeus, T. Human factors and ergonomics in manufacturing in the industry 4.0 context-A scoping review. Technol. Soc. 2021, 65, 101572. [Google Scholar] [CrossRef]
- Negulescu, O.; Doval, E. Ergonomics and time management in remote working from home. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2021, 64, 1–10. [Google Scholar]
- Lavrov, E.; Kupenko, O.; Lavryk, T.; Barchenko, N. Organizational Approach to the Ergonomic Examination of E-Learning Modules. Informatics Educ. 2013, 12, 105–123. [Google Scholar] [CrossRef]
- Shorfuzzaman, M.; Hossain, M.S.; Nazir, A.; Muhammad, G.; Alamri, A. Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Comput. Hum. Behav. 2018, 92, 578–588. [Google Scholar] [CrossRef]
- Aladwani, A.; Palvia, P. Developing and validating an instrument for measuring user-perceived web quality. Inf. Manag. 2002, 39, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Guri-Rosenblit, S. Eight paradoxes in the implementation process of e-learning in higher education. Distances Savoirs 2006, 4, 155–179. [Google Scholar] [CrossRef]
- Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf. Fusion 2021, 76, 355–375. [Google Scholar] [CrossRef]
- Rad, D.; Demeter, E. Youth Sustainable Healthcare. Postmod. Open. Deschid. 2019, 10, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Nooruddin, S.; Karray, F.; Muhammad, G. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects. Comput. Biol. Med. 2022, 149, 03274. [Google Scholar] [CrossRef] [PubMed]
- Widdicks, K. When the Good Turns Ugly: Speculating Next Steps for Digital Wellbeing Tools. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, Tallinn, Estonia, 25–29 October 2020; pp. 1–6. [Google Scholar]
- MongeRoffarello, A.; De Russis, L. The Race towards Healthcare: Issues and Opportunities. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–14. [Google Scholar]
- Giraldo-Luque, S.; Afanador, P.A.; Fernández-Rovira, C. The Struggle for Human Attention: Between the Abuse of Social Media and Digital Wellbeing. Healthcare 2020, 8, 497. [Google Scholar] [CrossRef] [PubMed]
- Oyebode, O.; Ndulue, C.; Mulchandani, D.; Adib, A.A.Z.; Alhasani, M.; Orji, R. Tailoring Persuasive and Behaviour Change Systems Based on Stages of Change and Motivation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–19. [Google Scholar] [CrossRef]
- Monge Roffarello, A.; De Russis, L. Towards Multi-Device Digital Self-Control Tools. In Proceedings of the IFIP Conference on Human-Computer Interaction, Bari, Italy, 30 August–3 September 2021; Springer: Cham, Switzerland, 2021; pp. 122–131. [Google Scholar]
- Lyngs, U.; Lukoff, K.; Slovak, P.; Binns, R.; Slack, A.; Inzlicht, M.; Van Kleek, M.; Shadbolt, N. Self-Control in Cyberspace: Applying Dual Systems Theory to a Review of Digital Self-Control Tools. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–18. [Google Scholar]
- Benmoussa, K.; Laaziri, M.; Khoulji, S.; Kerkeb, M.L.; El Yamami, A. AHP-based Approach for Evaluating Ergonomic Criteria. Procedia Manuf. 2019, 32, 856–863. [Google Scholar] [CrossRef]
- Ayyildiz, E.; Gumus, A.T. A novel distance learning ergonomics checklist and risk evaluation methodology: A case of COVID-19 pandemic. Hum. Factors Ergon. Manuf. Serv. Ind. 2021, 31, 397–411. [Google Scholar] [CrossRef]
- Ilias, A.; Baidi, N.; Ghani, E.; Razali, F. Issues on the use of online learning: An exploratory study among university students during the COVID-19 pandemic. Univers. J. Educ. Res. 2020, 8, 5092–5105. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M.; Kabir, G. Role of Ergonomic Factors Affecting Production of Leather Garment-Based SMEs of India: Implications for Social Sustainability. Symmetry 2020, 12, 1414. [Google Scholar] [CrossRef]
- Foteinopoulos, P.; Papacharalampopoulos, A.; Stavropoulos, P. Block-based Analytical Hierarchy Process applied for the evaluation of Construction Sector Additive Manufacturing. Procedia CIRP 2019, 81, 950–955. [Google Scholar] [CrossRef]
- Wolnowska, A.; Konicki, W. Multi-criterial analysis of oversize cargo transport through the city, using the AHP method. Transp. Res. Procedia 2019, 39, 614–623. [Google Scholar] [CrossRef]
- Mayo, F.; Taboada, E.B. Ranking factors affecting public transport mode choice of commuters in an urban city of a developing country using analytic hierarchy process: The case of Metro Cebu, Philippines. Transp. Res. Interdiscip. Perspect. 2019, 4, 100078. [Google Scholar] [CrossRef]
- Bhushan, N.; Rai, K. Strategic Decision Making: Applying the Analytic Hierarchy Process; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Al-Husain, R.; Khorramshahgol, R. Incorporating analytical hierarchy process and goal programming to design responsive and efficient supply chains. Oper. Res. Perspect. 2020, 7, 100149. [Google Scholar] [CrossRef]
- Alonso, J.A.; Lamata, M.T. Consistency in the analytic hierarchy process: A new approach. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef]
- Leal, J.E. AHP-express: A simplified version of the analytical hierarchy process method. MethodsX 2019, 7, 100748. [Google Scholar] [CrossRef] [PubMed]
- Sinuany-Stern, Z.; Israeli, Y.; Bar-Eli, M. Application of the analytic hierarchy process for the evaluation of basketball teams. Int. J. Sport Manag. Mark. 2006, 1, 193. [Google Scholar] [CrossRef]
- Upadhyay, H.; Juneja, A.; Juneja, S.; Gupta, D. AHP-based evaluation of critical barriers for social distancing in India during COVID-19 pandemic. Int. J. Netw. Virtual Organ. 2021, 25, 286–307. [Google Scholar] [CrossRef]
- Whitaker, R. Validation examples of the Analytic Hierarchy Process and Analytic Network Process. Math. Comput. Model. 2007, 46, 840–859. [Google Scholar] [CrossRef]
- Ng, C.Y.; Chuah, K.B. Evaluation of design alternatives’ environmental performance using AHP and ER approaches. IEEE Syst. J. 2013, 8, 1185–1192. [Google Scholar] [CrossRef]
- Kou, G.; Ergu, D.; Chen, Y.; Lin, C. Pairwise comparison matrix in multiple criteria decision making. Technol. Econ. Dev. Econ. 2016, 22, 738–765. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.; Gorski, E.; Loures, E.F.; Santos, E.A.P.; Deschamps, F. Applying machine learning to AHP multicriteria decision making method to assets prioritization in the context of industrial maintenance 4.0. IFAC Pap. 2019, 52, 2152–2157. [Google Scholar] [CrossRef]
- Juneja, S.; Juneja, A.; Anand, R. Healthcare 4.0-digitizing healthcare using big data for performance improvisation. J. Comput. Theor. Nanosci. 2020, 17, 4408–4410. [Google Scholar] [CrossRef]
- Uppal, M.; Gupta, D.; Juneja, S.; Dhiman, G.; Kautish, S. Cloud-Based Fault Prediction Using IoT in Office Automation for Improvisation of Health of Employees. J. Heal. Eng. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- De Farias, C.M.; Pirmez, L.; Delicato, F.C.; Pires, P.F.; Guerrieri, A.; Fortino, G.; Cauteruccio, F.; Terracina, G. A Multisensor Data Fusion Algorithm Using the Hidden Correlations in Multiapplication Wireless Sensor Data Streams. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; IEEE: New York, NY, USA, 2017; pp. 96–102. [Google Scholar] [CrossRef]
- Messaoudi, D.; Settou, N.; Negrou, B.; Rahmouni, S.; Settou, B.; Mayou, I. Site selection methodology for the wind-powered hydrogen refueling station based on AHP-GIS in Adrar, Algeria. Energy Procedia 2019, 162, 67–76. [Google Scholar] [CrossRef]
- Monga, C.; Gupta, D.; Prasad, D.; Juneja, S.; Muhammad, G.; Ali, Z. Sustainable Network by Enhancing Attribute-Based Selection Mechanism Using Lagrange Interpolation. Sustainability 2022, 14, 6082. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.; Ryholt, C.U.; Burr, H.; Villadsen, E.; Christensen, H. Work-related psychosocial, physical and individual factors associated with musculoskeletal symptoms in computer users. Work Stress 2002, 16, 107–120. [Google Scholar] [CrossRef]
- Moom, R.K.; Sing, L.P.; Moom, N. Prevalence of Musculoskeletal Disorder among Computer Bank Office Employees in Punjab (India): A Case Study. Procedia Manuf. 2015, 3, 6624–6631. [Google Scholar] [CrossRef] [Green Version]
- Korpinen, L.; Pääkkönen, R.; Gobba, F. Self-reported ache, pain, or numbness in hip and lower back and use of computers and cell phones amongst Finns aged 18–65. Int. J. Ind. Ergon. 2015, 48, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Mozafari, A.; Vahedian, M.; Mohebi, S.; Najafi, M. Prevalence and risk factors of Musculoskeletal Disorders among official workers in Qom. Afinidad 2014, 80, 567. [Google Scholar]
- Sharan, D.; Parijat, P.; Sasidharan, A.P.; Ranganathan, R.; Mohandoss, M.; Jose, J. Workstyle Risk Factors for Work Related Musculoskeletal Symptoms Among Computer Professionals in India. J. Occup. Rehabil. 2011, 21, 520–525. [Google Scholar] [CrossRef]
- Ariens, G.A.M.; Bongers, P.M.; Douwes, M.; Miedema, M.C.; Hoogendoorn, W.E.; van der Wal, G.; Bouter, L.M.; van Mechelen, W. Are neck flexion, neck rotation, and sitting at work risk factors for neck pain? Results of a prospective cohort study. Occup. Environ. Med. 2001, 58, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Gerr, F.; Marcus, M.; Ensor, C.; Kleinbaum, D.; Cohen, S.; Ma, A.E.; Gentry, E.; Ortiz, D.J.; Monteilh, C. A prospective study of computer users: I. Study design and incidence of musculoskeletal symptoms and disorders. Am. J. Ind. Med. 2002, 41, 221–235. [Google Scholar] [CrossRef]
- Lozano, C.; Jindrich, D.; Kahol, K. The Impact on Musculoskeletal System during Multitouch Tablet Interactions. In Proceedings of the Sigchi Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 825–828. [Google Scholar]
- Punnett, L.; Bergqvist, U. Visual display unit work and upper extremity musculoskeletal disorders. Stockh. Natl. Inst. Work. Life 1997, 16, 997. [Google Scholar]
- Hayes, J.; Sheedy, J.; Stelmack, J.; Heaney, C. Computer use, symptoms, and quality of life. Optom Vis Sci. 2007, 84, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Elamvazuthi, I.; Alsulaiman, M.; Muhammad, G. Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals. J. Med Syst. 2015, 40, 20. [Google Scholar] [CrossRef] [PubMed]
- Della Casa, E.; Helbling, J.; Meichtry, A.; Luomajoki, H.; Kool, J. Head-Eye movement control tests in patients with Persistent Cervicalgia: Inter-observer reliability and discriminative validity. BMC Musculoskelet. Disord. 2014, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, R.A.; Andary, M. Carpal tunnel syndrome: Pathophysiology and clinical neurophysiology. Clin. Neurophysiol. 2002, 113, 1373–1381. [Google Scholar] [CrossRef]
- Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S.U.; Altuwaijri, G.A.; Abdul, W.; Bencherif, M.A.; Faisal, M. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Comput. Appl. 2021, 1–42. [Google Scholar] [CrossRef]
- Thomsen, J.F.; Gerr, F.; Atroshi, I. Carpal tunnel syndrome and the use of computer mouse and keyboard: A systematic review. BMC Musculoskelet. Disord. 2008, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Feuerstein, M.; Armstrong, T.; Hickey, P.; Lincoln, A. Computer keyboard force and upper extremity symptoms. J. Occup. Environ. Med. 1997, 39, 1144–1153. [Google Scholar] [CrossRef]
- Simoneau, G.; Marklin, R.; Monroe, J. Wrist and forearm postures of users of conventional computer key-boards. Hum. Factors 1999, 41, 413–424. [Google Scholar] [CrossRef]
- Baker, N.A.; Cham, R.; Cidboy, E.H.; Cook, J.; Redfern, M.S. Kinematics of the fingers and hands during computer keyboard use. Clin. Biomech. 2007, 22, 34–43. [Google Scholar] [CrossRef]
- Simoneau, G.G.; Marklin, R.W. Effect of computer keyboard slope and height on wrist extension angle. Hum. Factors J. Hum. Factors Ergon. Soc. 2001, 43, 287–298. [Google Scholar] [CrossRef]
- Karlqvist, L.K.; Hagberg, M.; Köster, M.; Wenemark, M.; Anell, R. Musculoskeletal Symptoms among Computer assisted Design (CAD) Operators and Evaluation of a Self-assessment Questionnaire. Int. J. Occup. Environ. Heal. 1996, 2, 185–194. [Google Scholar] [CrossRef]
- Laitinen, H.; Saari, J.; Kivistö, M.; Rasa, P.-L. Improving physical and psychosocial working conditions through a participatory ergonomic process A before-after study at an engineering workshop. Int. J. Ind. Ergon. 1998, 21, 35–45. [Google Scholar] [CrossRef]
- Frank, J.W.; Pulcins, I.R.; Kerr, M.S.; Shannon, H.S.; Stansfeld, S.A. Occupational back pain—An unhelpful polemic. Scand. J. Work. Environ. Health 1995, 21, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Serranheira, F.; Pereira, M.; Silva Santos, C.; Cabrita, M. Auto-referência de sintomas de lesões musculo-esqueleticas ligadas ao trabalho LMELT numa grande empresa em Portugal. Rev. Port. Saúde Pública 2003, 21, 37–47. [Google Scholar]
- Wongngam, P.; Rajaratnam, B.; Janwantanakul, P. Internal oblique and transversusabdominis muscle Exhaustion in-duced by slumped sitting posture after 1 hour of sitting in office workers. Saf. Health Work. 2016, 7, 49–54. [Google Scholar]
- Alshehri, F.; Muhammad, G. A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare. IEEE Access 2020, 9, 3660–3678. [Google Scholar] [CrossRef]
- Homer, A.; Owen, N.; Dunstan, D. Too much sitting and dysglycemia: Mechanistic links and implications for obesity. Curr. Opin. Endocr. Metab. Res. 2019, 4, 42–49. [Google Scholar] [CrossRef]
- Dempsey, P.; Sacre, J.; Owen, N.; Straznicky, N.; Cohen, N.; Kingwell, B.; Dunstan, D. Interrupting prolonged sitting reduces resting blood pressure in adults with type 2 diabetes. Hear. Lung Circ. 2015, 24, S127–S128. [Google Scholar] [CrossRef] [Green Version]
- Colberg, S.; Sigal, R.; Yardley, J.; Riddell, M.; Dunstan, D.; Dempsey, P. Physical Activity/Exercise and Hyperglycemia: A Position Statement of the American Hyperglycemia. Assoc. Hyperglycemia Care 2016, 39, 2065–2079. [Google Scholar]
- Dempsey, P.C.; Dunstan, D.W.; Larsen, R.N.; Lambert, G.W.; Kingwell, B.A.; Owen, N. Prolonged uninterrupted sitting increases fatigue in type 2 diabetes. Diabetes Res. Clin. Pr. 2017, 135, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Pant, S.; Kumar, A.; Ram, M.; Klochkov, Y.; Sharma, H. Consistency Indices in Analytic Hierarchy Process: A Review. Mathematics 2022, 10, 1206. [Google Scholar] [CrossRef]
- Bargueño, D.R.; Salomon, V.A.P.; Marins, F.A.S.; Palominos, P.; Marrone, L.A. State of the Art Review on the Analytic Hierarchy Process and Urban Mobility. Mathematics 2021, 9, 3179. [Google Scholar] [CrossRef]
- Juneja, S.; Dhiman, G.; Kautish, S.; Viriyasitavat, W.; Yadav, K. A Perspective Roadmap for IoMT-Based Early Detection and Care of the Neural Disorder, Dementia. J. Healthc. Eng. 2021, 2021, 6712424. [Google Scholar] [CrossRef]
- Anand, R.; Sindhwani, N.; Juneja, S. Cognitive Internet of Things, Its Applications, and Its Challenges: A Survey. In Harnessing the Internet of Things (IoT) for a Hyper-Connected Smart World; Apple Academic Press, 2022; pp. 91–113. [Google Scholar]
- Mittal, S.; Bansal, A.; Gupta, D.; Juneja, S.; Turabieh, H.; Elarabawy, M.M.; Sharma, A.; Bitsue, Z.K. Using Identity-Based Cryptography as a Foundation for an Effective and Secure Cloud Model for E-Health. Comput. Intell. Neurosci. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Juneja, S.; Juneja, A.; Dhankhar, A.; Jain, V. IoT-Enabled Effective Healthcare Monitoring System Using Semantic Web. Semant. Web Eff. Healthc. 2021, 175–189. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, K.; Gupta, D.; Juneja, S.; Turabieh, H.; Sharma, S. SWOT: A Hybrid Hardware-Based Approach for Robust Fault-Tolerant Framework in a Smart Day Care. Secur. Commun. Netw. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Uppal, M.; Gupta, D.; Juneja, S.; Sulaiman, A.; Rajab, K.; Rajab, A.; Elmagzoub, M.A.; Shaikh, A. Cloud-Based Fault Prediction for Real-Time Monitoring of Sensor Data in Hospital Environment Using Machine Learning. Sustainability 2022, 14, 11667. [Google Scholar] [CrossRef]
- Iwendi, C.; Maddikunta, P.K.R.; Gadekallu, T.R.; Lakshmanna, K.; Bashir, A.K.; Piran, J. A metaheuristic optimization approach for energy efficiency in the IoT networks. Softw. Pract. Exp. 2020, 51, 2558–2571. [Google Scholar] [CrossRef]
- Wang, W.; Xu, H.; Alazab, M.; Gadekallu, T.R.; Han, Z.; Su, C. Blockchain-Based Reliable and Efficient Certificateless Signature for IIoT Devices. IEEE Trans. Ind. Inform. 2021, 18, 7059–7067. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Gadekallu, T.R.; Kaluri, R.; Srivastava, G.; Parizi, R.M.; Khan, M.S. Green communication in IoT networks using a hybrid optimization algorithm. Comput. Commun. 2020, 159, 97–107. [Google Scholar] [CrossRef]
- Alazab, M.; Lakshmanna, K.; Pham, Q.; Reddy Maddikunta, P. Multi-objective cluster head selection using fitness averaged rider optimization algorithm for IoT networks in smart cities. Sustain. Energy Technol. Assess. 2021, 43, 100973. [Google Scholar] [CrossRef]
Value | Category | Explanation |
---|---|---|
1 | Equally dominant | Two actions endorse likewise for an objective |
3 | Feeble dominance of one over another | Familiarity and evaluation partially weigh an action to the other |
5 | Indispensable or compulsorily dominant | Familiarity and evaluation strongly weigh an action to the other |
7 | Established dominance | An action is predominantly biased, and its authority is validated in practice |
9 | Complete dominance | The indication is biased from one action to the other action, this is the maximum feasible degree of conformance |
2, 4, 6, 8 | Intermediary tenets among the two contiguous judgments | When there is a need for some negotiation |
N | 3 | 4 | 5 | 6 | 7 |
RI | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 |
N | 8 | 9 | 10 | 11 | 12 |
RI | 1.41 | 1.45 | 1.49 | 1.51 | 1.535 |
Criteria | Sub Criteria | Issue |
---|---|---|
Excruciating Issues | Lumbago | ISS1 |
Cervicalgia | ISS2 | |
Shoulder Pain | ISS3 | |
Eye-Ear-Nerve Issues | Digital Eye Strain | ISS4 |
Hearing impairment | ISS5 | |
Carpal Tunnel Syndrome | ISS6 | |
Psychosocial Issues | Distress | ISS7 |
Exhaustion | ISS8 | |
Depression | ISS9 | |
Persistent Issues | Obesity | ISS10 |
High Blood Pressure | ISS11 | |
Hyperglycemia | ISS12 |
Issue | ISS1 | ISS2 | ISS3 | ISS4 | ISS5 | ISS6 | ISS7 | ISS8 | ISS9 | ISS10 | ISS11 | ISS12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISS1 | 1 | 0.33 | 0.20 | 0.17 | 0.25 | 0.13 | 0.11 | 0.11 | 0.11 | 0.11 | 0.14 | 0.50 |
ISS2 | 3 | 1 | 0.33 | 0.25 | 0.50 | 0.17 | 0.14 | 0.14 | 0.14 | 0.14 | 0.20 | 2 |
ISS3 | 5 | 3 | 1 | 0.50 | 2 | 0.25 | 0.20 | 0.20 | 0.20 | 0.20 | 0.33 | 4 |
ISS4 | 6 | 4 | 2 | 1 | 3 | 0.33 | 0.25 | 0.25 | 0.25 | 0.25 | 0.50 | 5 |
ISS5 | 4 | 2 | 0.50 | 0.33 | 1 | 0.20 | 0.17 | 0.17 | 0.17 | 0.17 | 0.25 | 3 |
ISS6 | 8 | 6 | 4 | 3 | 5 | 1 | 0.33 | 0.50 | 0.50 | 0.33 | 2 | 7 |
ISS7 | 9 | 7 | 5 | 4 | 6 | 3 | 1 | 3 | 2 | 2 | 4 | 8 |
ISS8 | 9 | 7 | 5 | 4 | 6 | 2 | 0.33 | 1 | 0.50 | 0.50 | 3 | 8 |
ISS9 | 9 | 7 | 5 | 4 | 6 | 2 | 0.50 | 2 | 1 | 0.50 | 3 | 8 |
ISS10 | 9 | 7 | 5 | 4 | 6 | 3 | 0.50 | 2 | 2 | 1 | 3 | 8 |
ISS11 | 7 | 5 | 3 | 2 | 4 | 0.50 | 0.25 | 0.33 | 0.33 | 0.33 | 1 | 6 |
ISS12 | 2 | 0.50 | 0.25 | 0.20 | 0.33 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.17 | 1 |
Sum | 72 | 49.83 | 31.28 | 23.45 | 40.08 | 12.72 | 3.91 | 9.83 | 7.33 | 5.66 | 17.59 | 60.5 |
Issue | ISS1 | ISS2 | ISS3 | ISS4 | ISS5 | ISS6 | ISS7 | ISS8 | ISS9 | ISS10 | ISS11 | ISS12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISS1 | 0.014 | 0.007 | 0.006 | 0.007 | 0.006 | 0.010 | 0.028 | 0.011 | 0.015 | 0.019 | 0.008 | 0.008 |
ISS2 | 0.042 | 0.020 | 0.011 | 0.011 | 0.013 | 0.013 | 0.036 | 0.014 | 0.019 | 0.025 | 0.011 | 0.033 |
ISS3 | 0.069 | 0.060 | 0.032 | 0.022 | 0.050 | 0.020 | 0.051 | 0.020 | 0.027 | 0.035 | 0.018 | 0.067 |
ISS4 | 0.083 | 0.080 | 0.065 | 0.043 | 0.075 | 0.026 | 0.064 | 0.025 | 0.034 | 0.044 | 0.028 | 0.083 |
ISS5 | 0.056 | 0.040 | 0.016 | 0.014 | 0.025 | 0.016 | 0.043 | 0.017 | 0.023 | 0.030 | 0.014 | 0.050 |
ISS6 | 0.111 | 0.120 | 0.129 | 0.130 | 0.125 | 0.079 | 0.084 | 0.051 | 0.068 | 0.058 | 0.111 | 0.117 |
ISS7 | 0.125 | 0.140 | 0.161 | 0.174 | 0.150 | 0.236 | 0.256 | 0.305 | 0.273 | 0.353 | 0.222 | 0.133 |
ISS8 | 0.125 | 0.140 | 0.161 | 0.174 | 0.150 | 0.157 | 0.084 | 0.102 | 0.068 | 0.088 | 0.167 | 0.133 |
ISS9 | 0.125 | 0.140 | 0.161 | 0.174 | 0.150 | 0.157 | 0.128 | 0.203 | 0.136 | 0.088 | 0.167 | 0.133 |
ISS10 | 0.125 | 0.140 | 0.161 | 0.174 | 0.150 | 0.236 | 0.128 | 0.203 | 0.273 | 0.177 | 0.167 | 0.133 |
ISS11 | 0.097 | 0.100 | 0.097 | 0.087 | 0.100 | 0.039 | 0.064 | 0.034 | 0.045 | 0.058 | 0.056 | 0.100 |
ISS12 | 0.028 | 0.010 | 0.008 | 0.009 | 0.008 | 0.011 | 0.033 | 0.013 | 0.018 | 0.023 | 0.009 | 0.017 |
ISS1 | ISS2 | ISS3 | ISS4 | ISS5 | ISS6 | ISS7 | ISS8 | ISS9 | ISS10 | ISS11 | ISS12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria Weights | 0.012 | 0.021 | 0.039 | 0.054 | 0.029 | 0.099 | 0.211 | 0.129 | 0.147 | 0.172 | 0.073 | 0.016 |
Issue | ISS1 | ISS2 | ISS3 | ISS4 | ISS5 | ISS6 | ISS7 | ISS8 | ISS9 | ISS10 | ISS11 | ISS12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ISS1 | 0.012 | 0.007 | 0.008 | 0.009 | 0.007 | 0.013 | 0.023 | 0.014 | 0.016 | 0.019 | 0.010 | 0.008 |
ISS2 | 0.036 | 0.021 | 0.013 | 0.014 | 0.015 | 0.017 | 0.030 | 0.018 | 0.021 | 0.024 | 0.015 | 0.032 |
ISS3 | 0.060 | 0.063 | 0.039 | 0.027 | 0.058 | 0.025 | 0.042 | 0.026 | 0.029 | 0.034 | 0.024 | 0.064 |
ISS4 | 0.072 | 0.084 | 0.078 | 0.054 | 0.087 | 0.033 | 0.053 | 0.032 | 0.037 | 0.043 | 0.037 | 0.080 |
ISS5 | 0.048 | 0.042 | 0.020 | 0.018 | 0.029 | 0.020 | 0.036 | 0.022 | 0.025 | 0.029 | 0.018 | 0.048 |
ISS6 | 0.096 | 0.126 | 0.156 | 0.162 | 0.145 | 0.099 | 0.070 | 0.065 | 0.074 | 0.057 | 0.146 | 0.112 |
ISS7 | 0.108 | 0.147 | 0.195 | 0.216 | 0.174 | 0.297 | 0.211 | 0.387 | 0.294 | 0.344 | 0.292 | 0.128 |
ISS8 | 0.108 | 0.147 | 0.195 | 0.216 | 0.174 | 0.198 | 0.070 | 0.129 | 0.074 | 0.086 | 0.219 | 0.128 |
ISS9 | 0.108 | 0.147 | 0.195 | 0.216 | 0.174 | 0.198 | 0.106 | 0.258 | 0.147 | 0.086 | 0.219 | 0.128 |
ISS10 | 0.108 | 0.147 | 0.195 | 0.216 | 0.174 | 0.297 | 0.106 | 0.258 | 0.294 | 0.172 | 0.219 | 0.128 |
ISS11 | 0.084 | 0.105 | 0.117 | 0.108 | 0.116 | 0.050 | 0.053 | 0.043 | 0.049 | 0.057 | 0.073 | 0.096 |
ISS12 | 0.024 | 0.011 | 0.010 | 0.011 | 0.010 | 0.014 | 0.027 | 0.017 | 0.019 | 0.022 | 0.012 | 0.016 |
Issue | Criteria Weight Age | Weighted Sum | λ = Weighted Sum/Criteria Weight Age |
---|---|---|---|
ISS1 | 0.012 | 0.146 | 12.167 |
ISS2 | 0.021 | 0.256 | 12.190 |
ISS3 | 0.039 | 0.491 | 12.590 |
ISS4 | 0.054 | 0.69 | 12.778 |
ISS5 | 0.029 | 0.355 | 12.241 |
ISS6 | 0.099 | 1.308 | 13.212 |
ISS7 | 0.211 | 2.793 | 13.237 |
ISS8 | 0.129 | 1.744 | 13.519 |
ISS9 | 0.147 | 1.982 | 13.483 |
ISS10 | 0.172 | 2.314 | 13.453 |
ISS11 | 0.073 | 0.951 | 13.027 |
ISS12 | 0.016 | 0.193 | 12.063 |
Criteria | Sub Criteria | Priority | Rank |
---|---|---|---|
Excruciating Issues | Lumbago | 0.012 | XIIth |
Cervicalgia | 0.021 | Xth | |
Shoulder Pain | 0.039 | VIIIth | |
Eye-Ear-Nerve Issues | Digital Eye Strain | 0.054 | VIIth |
Hearing impairment | 0.029 | IXth | |
Carpal Tunnel Syndrome | 0.099 | Vth | |
Psychosocial Issues | Distress | 0.211 | Ist |
Exhaustion | 0.129 | IVth | |
Depression | 0.147 | IIIrd | |
Persistent Issues | Obesity | 0.172 | IInd |
High Blood Pressure | 0.073 | VIth | |
Hyperglycemia | 0.016 | XIth |
Criteria List | Priorities | Ranking |
---|---|---|
Excruciating Issues | 0.072 | 4 |
Eye-Ear-Nerve Issues | 0.182 | 3 |
Psychosocial Issues | 0.487 | 1 |
Persistent Issues | 0.261 | 2 |
Ref. | Paper | Outcome | Present Work |
---|---|---|---|
[17] | Benmoussa et al. (2019) | The authors have implemented MCDM using the AHP methodology. There were 4 main categories comprising 16 attributes in all, to analyze the ergonomic evaluation of the information systems. A comprehensive analytical study was carried out at the university of Morocco to ensure the validity of their proposed research work. | The presented work is to assess IoT-related ergonomics-based healthcare issues using the popular MCDM technique named AHP. A group dialogue was performed for identifying ergonomics-based IoT-related healthcare issues and the twelve ergonomic Issues in four categories were compared and ranked. |
[69] | Pant et al. (2022) | They provided a brief overview of the functional connections between the well-known consistency indices that have been established in the literature. | Our work has utilized AHP for ranking the IoT-related ergonomics-based healthcare issues and the categories. |
[28] | Sinuany-Stern, Israeli and Bar-Eli, (2006) | The authors have made a prediction model for the evaluation of the ranking of eleven basketball teams by incorporating the Analytical Hierarchical Process, through six criteria for evaluation and valuable inputs from four field experts. Consistency tests were further performed using five criteria and three field experts. It was observed that the AHP model’s predictions displayed a significant correlation compared to the actual ranking when matched at the season’s end. | The present work is for analyzing IoT-related ergonomics-based healthcare issues with the use of a popular multi-criteria decision-making technique named the AHP.A total of twelve IoT-related ergonomics-based healthcare issues have been identified and kept in four major categories. These were ranked by applying AHP method for respective priority values. |
[70] | Ruiz et al. (2021) | The AHP, a top multiple criteria decision-making (MCDM) technique, can be used to evaluate different plans for urban transportation in order to address shared objectives among municipalities. | Our work has utilized AHP for ranking the IoT-related ergonomics-based healthcare issues and the categories. |
[21] | Foteinopoulos, Papacharalampopoulos and Stavropoulos, (2019) | This experimental work considered a block-based modification of the AHP through a realistic case study for the construction sector. A group of two KPIs compatible for comparison and developed 2 consistent AHP matrices through questionnaires by using a voting procedure. The weight of each KPI was evaluated by incorporating block-based modified AHP as proposed in the work. | The presented research work has developed a multi-criteria decision-making system for assessing IoT-related ergonomics-based healthcare issues by applying AHP technology. A total of twelve IoT-related ergonomics-based healthcare issues in four categories (excruciating issues, eye-ear-nerve Issues, psychosocial issues, and persistent issues), have been compared and ranked. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, H.K.; Juneja, S.; Muhammad, G.; Nauman, A.; Awad, N.A. Analysis of IoT-Related Ergonomics-Based Healthcare Issues Using Analytic Hierarchy Process Methodology. Sensors 2022, 22, 8232. https://doi.org/10.3390/s22218232
Upadhyay HK, Juneja S, Muhammad G, Nauman A, Awad NA. Analysis of IoT-Related Ergonomics-Based Healthcare Issues Using Analytic Hierarchy Process Methodology. Sensors. 2022; 22(21):8232. https://doi.org/10.3390/s22218232
Chicago/Turabian StyleUpadhyay, Hemant K., Sapna Juneja, Ghulam Muhammad, Ali Nauman, and Nancy Awadallah Awad. 2022. "Analysis of IoT-Related Ergonomics-Based Healthcare Issues Using Analytic Hierarchy Process Methodology" Sensors 22, no. 21: 8232. https://doi.org/10.3390/s22218232
APA StyleUpadhyay, H. K., Juneja, S., Muhammad, G., Nauman, A., & Awad, N. A. (2022). Analysis of IoT-Related Ergonomics-Based Healthcare Issues Using Analytic Hierarchy Process Methodology. Sensors, 22(21), 8232. https://doi.org/10.3390/s22218232