FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring †
Abstract
:1. Introduction
- In order to maximize the effectiveness of the learned weights, we introduce a multi-channel DFM using VV, VH and elevation data from the NASA Digital Elevation Model (NASADEM), incorporating Feature Fusion, normalization and end-to-end masking.
- Inspired by the CNN architectures, we introduce an effective augmentation technique by creating an NAP augmentation module to extract multi-receptive features as patches using unit kernel convolution at multi-scale levels, which helps to achieve an enriched semantic representation and helps the model to learn faster.
- We confirm the efficacy of our method by designing four experimental setups: CFR, CFR-CB, PHR and PHR-CB, which build a progressive analytic framework for researchers to investigate semantic segmentation in SAR images and conduct comparisons with state-of-the-art methods.
- We propose FAPNET, which is a lightweight, memory-time efficient and high performance model, as demonstrated in our quantitative and qualitative analysis.
2. Study Area and Dataset
2.1. Feature Mapping and Discrepancy in Masking
2.2. Data Augmentation
3. Methodology
3.1. Overall Strategy
3.2. Proposed NAP Augmentation Algorithm
Algorithm 1:NAP Algorithm |
3.3. Proposed FAPNET Model
Algorithm 2:Proposed FAPNET Model Algorithm |
3.4. Hyperparameter Tuning
3.5. Loss Function
3.6. Evaluation Metrics
4. Performance Evaluation
4.1. Quantitative Analysis
4.2. CFR
4.3. CFR-CB
4.4. PHR
4.5. PHR-CB
4.6. Qualitative Analysis
4.7. Memory-Time Efficiency Analysis
4.8. Significance of DFM Module
4.9. Comparison with Competition Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intact Center on Climate Adaption; University of Waterloo. Rising Seas & Shifting Sands; Technical Report. 2021. Available online: https://bit.ly/3akf0GX (accessed on 2 May 2022).
- Tang, D.; Wang, F.; Xiang, Y.; You, H.; Kang, W. Automatic Water Detection Method in Flooding Area for GF-3 Single-Polarization Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5266–5269. [Google Scholar] [CrossRef]
- Kwak, Y.; Yun, S.h.; Iwami, Y. A new approach for rapid urban flood mapping using ALOS-2/PALSAR-2 in 2015 Kinu River Flood, Japan. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1880–1883. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Farhadi, H.; Esmaeily, A.; Najafzadeh, M. Flood monitoring by integration of Remote Sensing technique and Multi-Criteria Decision Making method. Comput. Geosci. 2022, 160, 105045. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Turčinović, F.; Erny, M.; Bosiljevac, M. Polarization Sensitivity of Short-Range S-band Radar Sensing System. In Proceedings of the 2021 International Symposium ELMAR, Zadar, Croatia, 13–15 September 2021; pp. 127–130. [Google Scholar] [CrossRef]
- STAC Overflow: Map Floodwater from Radar Imagery. Available online: https://www.drivendata.org/competitions/81/detect-flood-water/page/386/ (accessed on 1 June 2022).
- Lachaise, M.; Schweisshelm, B.; Fritz, T. The New Tandem-X Change Dem: Specifications And Interferometric Processing. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 646–651. [Google Scholar] [CrossRef]
- Kumar, M.S.; Keerthi, V.; Anjnai, R.N.; Sarma, M.M.; Bothale, V. Evalution of Machine Learning Methods for Hyperspectral Image Classification. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Virtual, 1–4 December 2020; pp. 225–228. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, H.; Zhu, C. Cascaded classification of high resolution remote sensing images using multiple contexts. Inf. Sci. 2013, 221, 84–97. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; Volume 97, pp. 6105–6114. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- ImageNet. Available online: https://www.image-net.org/ (accessed on 25 July 2022).
- Miao, Z.; Fu, K.; Sun, H.; Sun, X.; Yan, M. Automatic Water-Body Segmentation From High-Resolution Satellite Images via Deep Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 602–606. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, M.; Sun, G.C.; Chen, J.; Li, M.; Hu, Y.; Bao, Z. Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss. IEEE Trans. Geosci. Remote Sens. 2021, 59, 316–332. [Google Scholar] [CrossRef]
- Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.Q. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Feng, W.; Sui, H.; Huang, W.; Xu, C.; An, K. Water Body Extraction From Very High-Resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-Based Conditional Random Field Model. IEEE Geosci. Remote Sens. Lett. 2019, 16, 618–622. [Google Scholar] [CrossRef]
- Yuan, K.; Zhuang, X.; Schaefer, G.; Feng, J.; Guan, L.; Fang, H. Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7422–7434. [Google Scholar] [CrossRef]
- Chan, L.; Hosseini, M.S.; Plataniotis, K.N. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. Int. J. Comput. Vis. 2021, 129, 361–384. [Google Scholar] [CrossRef]
- Peng, C.; Li, Y.; Jiao, L.; Chen, Y.; Shang, R. Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2612–2626. [Google Scholar] [CrossRef]
- Tao, A.; Karan, N.; Nvidia, S.; Catanzaro Nvidia, B. Hierarchical Multi-Scale Attention For Semantic Segmentation. arXiv 2020, arXiv:2005.10821. [Google Scholar] [CrossRef]
- Yu, B.; Yang, L.; Chen, F. Semantic Segmentation for High Spatial Resolution Remote Sensing Images Based on Convolution Neural Network and Pyramid Pooling Module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3252–3261. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar] [CrossRef] [Green Version]
- Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks. In Proceedings of the Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 680–688. [Google Scholar] [CrossRef]
- Sun, W.; Wang, R. Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM. IEEE Geosci. Remote Sens. Lett. 2018, 15, 474–478. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Wang, C.; Ge, J.; Wu, F. Water Surface Mapping from Sentinel-1 Imagery Based on Attention-UNet3+: A Case Study of Poyang Lake Region. Remote Sens. 2022, 14, 4708. [Google Scholar] [CrossRef]
- Sarp, S.; Kuzlu, M.; Cetin, M.; Sazara, C.; Guler, O. Detecting Floodwater on Roadways from Image Data Using Mask-R-CNN. In Proceedings of the 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Novi Sad, Serbia, 24–26 August 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, J.; Pelich, R.; Hostache, R.; Margen, P.; Cao, S.; Wagner, W.; Chini, M. Deriving an Exclusion Map (Ex-Map) from Sentinel-l Time Series for Supporting Floodwater Mapping. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1280–1283. [Google Scholar] [CrossRef]
- Sazara, C.; Cetin, M.; Iftekharuddin, K.M. Detecting floodwater on roadways from image data with handcrafted features and deep transfer learning. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 804–809. [Google Scholar] [CrossRef] [Green Version]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3226–3229. [Google Scholar] [CrossRef]
- Frolov, V.; Faizov, B.; Shakhuro, V.; Sanzharov, V.; Konushin, A.; Galaktionov, V.; Voloboy, A. Image Synthesis Pipeline for CNN-Based Sensing Systems. Sensors 2022, 22, 2080. [Google Scholar] [CrossRef]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar] [CrossRef]
- Hamwood, J.; Alonso-Caneiro, D.; Read, S.A.; Vincent, S.J.; Collins, M.J. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. Biomed. Opt. Express 2018, 9, 3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar] [CrossRef]
- Elgeldawi, E.; Sayed, A.; Galal, A.R.; Zaki, A.M. Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. Informatics 2021, 8, 79. [Google Scholar] [CrossRef]
- Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019; pp. 1946–1956. [Google Scholar] [CrossRef] [Green Version]
- Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002. [Google Scholar]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Proceedings of the Advances in Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; Springer International Publishing: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar] [CrossRef]
- Nemni, E.; Bullock, J.; Belabbes, S.; Bromley, L. Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery. Remote Sens. 2020, 12, 2532. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer International Publishing: Cham, Switzerland, 2017; pp. 240–248. [Google Scholar] [CrossRef] [Green Version]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Virtual, 27–29 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Xiao, A.; Yang, X.; Lu, S.; Guan, D.; Huang, J. FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 176, 237–249. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; Wu, J.; Cao, L.; Meng, Q.; Kennedy, P.J. Training deep neural networks on imbalanced data sets. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 4368–4374. [Google Scholar] [CrossRef]
- Li, Z.; Kamnitsas, K.; Glocker, B. Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation. IEEE Trans. Med. Imaging 2021, 40, 1065–1077. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for volumetric medical image segmentation. In Proceedings of the 2016 4th International Conference on 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 20 September 2018; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Roh, Y.; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning: A Big Data—AI Integration Perspective. IEEE Trans. Knowl. Data Eng. 2021, 33, 1328–1347. [Google Scholar] [CrossRef]
Location | No of Chip | Month | Year |
---|---|---|---|
Bolivia | 15 | February | 2019 |
Cambodia | 30 | August | 2018 |
Ghana | 53 | September | 2018 |
India | 68 | August | 2016 |
Nigeria | 18 | September | 2018 |
Pakistan | 28 | June | 2017 |
Paraguay | 66 | October | 2018 |
Slovakia | 65 | October | 2020 |
Somalia | 26 | May | 2018 |
Spain | 30 | September | 2019 |
Sri Lanka | 42 | May | 2017 |
UK | 32 | February | 2019 |
USA | 69 | May | 2019 |
Total | 542 |
Layers | Conv2D | Conv2D | Padding | Non-Linearities |
---|---|---|---|---|
(512, 512, 3) | - | - | - | |
-1 | (512, 512, 16) | (512, 512, 16) | Same | ReLU |
-2 | (256, 256, 32) | (256, 256, 32) | Same | ReLU |
-3 | (128, 128, 64) | (128, 128, 64) | Same | ReLU |
-4 | (64, 64, 128) | (64, 64, 128) | Same | ReLU |
-5 | (32, 32, 256) | (32, 32, 32) | Same | ReLU |
-6 | (16, 16, 512) | (16, 16, 64) | Same | ReLU |
(8, 8, 1012) | (8, 8, 256) | Same | ReLU | |
-6 | (16, 16, 128) | (16, 16, 128) | Same | ReLU |
-5 | (32, 32, 128) | (32, 32, 128) | Same | ReLU |
-4 | (64, 64, 128) | (64, 64, 128) | Same | ReLU |
-3 | (128, 128, 64) | (128, 128, 64) | Same | ReLU |
-2 | (256, 256, 32) | (256, 256, 32) | Same | ReLU |
-1 | (512, 512, 16) | (512, 512, 16) | Same | ReLU |
(512, 512, 2) | - | - | Softmax |
Layers | Conv2D | Conv2D | Padding | Non-Linearities |
---|---|---|---|---|
(256, 256, 3) | - | - | - | |
-1 | (256, 256, 16) | (256, 256, 16) | Same | ReLU |
-2 | (128, 128, 32) | (128, 128, 32) | Same | ReLU |
-3 | (64, 64, 64) | (64, 64, 64) | Same | ReLU |
-4 | (32, 32, 128) | (32, 32, 128) | Same | ReLU |
-5 | (16, 16, 256) | (16, 16, 32) | Same | ReLU |
-6 | (8, 8, 512) | (8, 8, 64) | Same | ReLU |
(4, 4, 1012) | (4, 4, 256) | Same | ReLU | |
-6 | (8, 8, 128) | (8, 8, 128) | Same | ReLU |
-5 | (16, 16, 128) | (16, 16, 128) | Same | ReLU |
-4 | (32, 32, 128) | (32, 32, 128) | Same | ReLU |
-3 | (64, 64, 64) | (64, 64, 64) | Same | ReLU |
-2 | (128, 128, 32) | (128, 128, 32) | Same | ReLU |
-1 | (256, 256, 16) | (256, 256, 16) | Same | ReLU |
(256, 256, 2) | - | - | Softmax |
Class | Training | Validation | Test | Class Weights |
---|---|---|---|---|
Water | 15,804,563 | 2,611,509 | 1,941,970 | 0.14 |
Background | 97,703,789 | 11,544,267 | 12,475,950 | 0.86 |
Total | 113,508,352 | 14,155,776 | 14,417,920 | 1.0 |
Focal Loss | MIoU | Dice Coff | F1 | Precision | Recall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst |
UNET [54] | 0.0726 | 0.0788 | 0.0767 | 0.9084 | 0.8467 | 0.8306 | 0.9823 | 0.9497 | 0.9567 | 0.9527 | 0.8792 | 0.8455 | 0.9635 | 0.8845 | 0.8961 | 0.9478 | 0.8761 | 0.8370 |
VNET [55] | 0.0779 | 0.0782 | 0.0803 | 0.8158 | 0.8451 | 0.7463 | 0.9481 | 0.9468 | 0.9353 | 0.8508 | 0.8478 | 0.7402 | 0.8827 | 0.9385 | 0.8995 | 0.8460 | 0.8147 | 0.7119 |
DNCNN [52] | 0.0761 | 0.0769 | 0.0775 | 0.8455 | 0.8637 | 0.8132 | 0.9582 | 0.9536 | 0.9495 | 0.8414 | 0.8005 | 0.7915 | 0.8798 | 0.8424 | 0.8932 | 0.8377 | 0.8057 | 0.7723 |
UNET++ [56] | 0.0783 | 0.0763 | 0.0791 | 0.8063 | 0.8557 | 0.7777 | 0.9478 | 0.9505 | 0.9399 | 0.7754 | 0.7510 | 0.7444 | 0.8247 | 0.8065 | 0.8577 | 0.7941 | 0.7470 | 0.7365 |
U2NET [57] | 0.0728 | 0.0779 | 0.0796 | 0.9071 | 0.8500 | 0.7639 | 0.9754 | 0.9521 | 0.9389 | 0.8437 | 0.7868 | 0.7463 | 0.8888 | 0.8623 | 0.8866 | 0.8420 | 0.7779 | 0.7320 |
ATTUNET [53] | 0.0770 | 0.0777 | 0.0796 | 0.8225 | 0.8545 | 0.7717 | 0.9546 | 0.9511 | 0.9397 | 0.7835 | 0.7565 | 0.7393 | 0.8469 | 0.8048 | 0.8767 | 0.7933 | 0.7576 | 0.7224 |
FPN [49] | 0.0738 | 0.0748 | 0.0769 | 0.8845 | 0.8743 | 0.8450 | 0.9699 | 0.9558 | 0.9578 | 0.8880 | 0.8538 | 0.8541 | 0.9149 | 0.8873 | 0.9113 | 0.8803 | 0.8450 | 0.8341 |
LINKNET [58] | 0.0758 | 0.0775 | 0.0781 | 0.8465 | 0.8546 | 0.8021 | 0.9601 | 0.9513 | 0.9484 | 0.7947 | 0.7720 | 0.7735 | 0.8606 | 0.8271 | 0.8965 | 0.7956 | 0.7750 | 0.7567 |
FAPNET | 0.0713 | 0.0732 | 0.0755 | 0.9285 | 0.8937 | 0.8544 | 0.9760 | 0.9601 | 0.9630 | 0.9371 | 0.8948 | 0.8558 | 0.9491 | 0.9133 | 0.9071 | 0.9593 | 0.8835 | 0.8363 |
Focal Loss | MIoU | Dice Coff | F1 | Precision | Recall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst |
UNET [54] | 0.1009 | 0.1051 | 0.0760 | 0.9310 | 0.8563 | 0.8456 | 0.8457 | 0.8262 | 0.9590 | 0.7390 | 0.7168 | 0.8371 | 0.8319 | 0.7910 | 0.8763 | 0.7105 | 0.7051 | 0.8357 |
VNET [55] | 0.1032 | 0.1054 | 0.0802 | 0.8659 | 0.8463 | 0.7551 | 0.8321 | 0.8231 | 0.9343 | 0.6745 | 0.6875 | 0.7527 | 0.7848 | 0.8083 | 0.8739 | 0.6595 | 0.6773 | 0.7357 |
DNCNN [52] | 0.1036 | 0.1043 | 0.0774 | 0.8567 | 0.8702 | 0.8050 | 0.8291 | 0.8226 | 0.9460 | 0.6526 | 0.6495 | 0.8010 | 0.7710 | 0.7353 | 0.8859 | 0.6456 | 0.6477 | 0.7840 |
UNET++ [56] | 0.1040 | 0.1047 | 0.0778 | 0.8302 | 0.8556 | 0.8198 | 0.8276 | 0.8219 | 0.9425 | 0.6090 | 0.6156 | 0.7888 | 0.7346 | 0.7181 | 0.8541 | 0.6109 | 0.6226 | 0.7913 |
U2NET [57] | 0.1018 | 0.1047 | 0.0783 | 0.9014 | 0.8564 | 0.7898 | 0.8402 | 0.8253 | 0.9475 | 0.6364 | 0.6174 | 0.7611 | 0.7798 | 0.7242 | 0.8815 | 0.6337 | 0.6348 | 0.7426 |
ATTUNET [53] | 0.1025 | 0.1014 | 0.0799 | 0.8392 | 0.8507 | 0.7579 | 0.9601 | 0.9515 | 0.9370 | 0.7986 | 0.7649 | 0.7592 | 0.8564 | 0.8359 | 0.8798 | 0.8564 | 0.7650 | 0.7497 |
FPN [49] | 0.1033 | 0.1034 | 0.0748 | 0.8654 | 0.8789 | 0.8651 | 0.8324 | 0.8304 | 0.9618 | 0.6679 | 0.6839 | 0.8292 | 0.7790 | 0.7714 | 0.9032 | 0.6558 | 0.6797 | 0.8095 |
LINKNET [58] | 0.1005 | 0.1066 | 0.0758 | 0.9332 | 0.8959 | 0.8638 | 0.8469 | 0.9654 | 0.9650 | 0.6897 | 0.8598 | 0.8491 | 0.8204 | 0.9008 | 0.9118 | 0.6730 | 0.8596 | 0.8382 |
FAPNET | 0.1002 | 0.1042 | 0.0752 | 0.9264 | 0.8797 | 0.8679 | 0.8556 | 0.8409 | 0.9668 | 0.7276 | 0.7240 | 0.8322 | 0.8417 | 0.8131 | 0.9219 | 0.6995 | 0.7116 | 0.8125 |
Focal Loss | MIoU | Dice Coff | F1 | Precision | Recall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst |
UNET [54] | 0.0773 | 0.0772 | 0.0776 | 0.8241 | 0.8590 | 0.8058 | 0.9523 | 0.9530 | 0.9511 | 0.8119 | 0.6879 | 0.7672 | 0.8669 | 0.7502 | 0.8452 | 0.8070 | 0.8021 | 0.7908 |
VNET [55] | 0.0779 | 0.0803 | 0.0800 | 0.8151 | 0.8254 | 0.7552 | 0.9501 | 0.9403 | 0.9409 | 0.7979 | 0.6730 | 0.6844 | 0.8542 | 0.7381 | 0.8377 | 0.7996 | 0.7986 | 0.7027 |
DNCNN [52] | 0.0774 | 0.0778 | 0.0781 | 0.8266 | 0.8552 | 0.7959 | 0.9529 | 0.9426 | 0.9473 | 0.8090 | 0.6649 | 0.7215 | 0.8642 | 0.7028 | 0.8099 | 0.8047 | 0.7845 | 0.7478 |
UNET++ [56] | 0.0775 | 0.0769 | 0.0784 | 0.8211 | 0.8597 | 0.7878 | 0.9518 | 0.9539 | 0.9459 | 0.7977 | 0.6563 | 0.7048 | 0.8488 | 0.7563 | 0.8345 | 0.8010 | 0.7599 | 0.7276 |
U2NET [57] | 0.0751 | 0.0765 | 0.0781 | 0.8671 | 0.8719 | 0.8045 | 0.9652 | 0.9584 | 0.9513 | 0.8182 | 0.6751 | 0.7350 | 0.8798 | 0.7479 | 0.8388 | 0.8137 | 0.7925 | 0.7666 |
ATTUNET [53] | 0.0787 | 0.0779 | 0.0799 | 0.8028 | 0.8477 | 0.7496 | 0.9467 | 0.9492 | 0.9400 | 0.7857 | 0.6531 | 0.6846 | 0.8468 | 0.7181 | 0.8076 | 0.7889 | 0.7649 | 0.7084 |
FPN [49] | 0.0727 | 0.0747 | 0.0762 | 0.9065 | 0.8941 | 0.8301 | 0.9757 | 0.9656 | 0.9590 | 0.8747 | 0.6891 | 0.7660 | 0.9126 | 0.7674 | 0.8763 | 0.8628 | 0.7870 | 0.7743 |
LINKNET [58] | 0.0725 | 0.0752 | 0.0755 | 0.9108 | 0.8904 | 0.8454 | 0.9766 | 0.9637 | 0.9621 | 0.8851 | 0.7101 | 0.7756 | 0.9208 | 0.7580 | 0.8706 | 0.8748 | 0.8185 | 0.7891 |
FAPNET | 0.0773 | 0.0772 | 0.0796 | 0.8241 | 0.8590 | 0.7649 | 0.9523 | 0.9530 | 0.9432 | 0.8119 | 0.6879 | 0.7216 | 0.8669 | 0.7502 | 0.8349 | 0.8070 | 0.8021 | 0.7498 |
Focal Loss | MIoU | Dice Coff | F1 | Precision | Recall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst |
UNET [54] | 0.0733 | 0.0821 | 0.0803 | 0.9480 | 0.8717 | 0.7930 | 0.9720 | 0.9321 | 0.9429 | 0.9683 | 0.8617 | 0.7522 | 0.9686 | 0.8667 | 0.7778 | 0.9680 | 0.9140 | 0.8311 |
VNET [55] | 0.0835 | 0.0840 | 0.0826 | 0.8589 | 0.8545 | 0.7573 | 0.9191 | 0.9177 | 0.9234 | 0.9081 | 0.7998 | 0.7284 | 0.9081 | 0.8332 | 0.7780 | 0.9112 | 0.8618 | 0.8037 |
DNCNN [52] | 0.0844 | 0.0802 | 0.0803 | 0.8496 | 0.8855 | 0.7844 | 0.9141 | 0.9373 | 0.9380 | 0.9023 | 0.8283 | 0.7550 | 0.9039 | 0.8503 | 0.8128 | 0.9068 | 0.8865 | 0.8146 |
UNET++ [56] | 0.0769 | 0.0802 | 0.0820 | 0.9153 | 0.8867 | 0.7664 | 0.9536 | 0.9389 | 0.9286 | 0.9460 | 0.7919 | 0.7434 | 0.9464 | 0.8275 | 0.7924 | 0.9464 | 0.8682 | 0.8093 |
U2NET [57] | 0.0748 | 0.0792 | 0.0830 | 0.9481 | 0.8639 | 0.7615 | 0.9741 | 0.9449 | 0.9236 | 0.9663 | 0.7766 | 0.7423 | 0.9667 | 0.8093 | 0.7681 | 0.9668 | 0.8792 | 0.8353 |
ATTUNET [53] | 0.0776 | 0.0800 | 0.0808 | 0.9095 | 0.8873 | 0.7776 | 0.9499 | 0.9390 | 0.9347 | 0.9406 | 0.7993 | 0.7376 | 0.9413 | 0.8262 | 0.7720 | 0.9411 | 0.8704 | 0.7993 |
FPN [49] | 0.0752 | 0.0800 | 0.0901 | 0.9311 | 0.8881 | 0.6967 | 0.9627 | 0.9395 | 0.8900 | 0.9547 | 0.8098 | 0.7082 | 0.9546 | 0.8215 | 0.7111 | 0.9558 | 0.8879 | 0.8497 |
LINKNET [58] | 0.0789 | 0.0793 | 0.0890 | 0.8985 | 0.8941 | 0.6996 | 0.9442 | 0.9425 | 0.8946 | 0.9342 | 0.8047 | 0.7213 | 0.9345 | 0.8176 | 0.7300 | 0.9355 | 0.8602 | 0.8430 |
FAPNET | 0.0730 | 0.0792 | 0.0794 | 0.9514 | 0.8960 | 0.8706 | 0.9695 | 0.9454 | 0.9400 | 0.9612 | 0.8706 | 0.7580 | 0.9565 | 0.8795 | 0.8064 | 0.9584 | 0.8967 | 0.8508 |
Model | Refactor | Batch | GPU (gb) | RAM (gb) | Batch Time (s) | Time for 5 Epoch (min) |
---|---|---|---|---|---|---|
UNET [54] | 10 | 79 | ||||
VNET [55] | 10 | 95 | ||||
DNCNN [52] | 10 | 201 | ||||
UNET++ [56] | 10 | 163 | ||||
U2NET [57] | 1 | 6 | 273 | |||
ATTUNET [53] | 10 | 194 | ||||
FPN [49] | 10 | 128 | ||||
LINKNET [58] | 10 | 83 | ||||
FAPNET | 10 | 79 |
Metrics | VV | VH | DEM | DFM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | Trn | Val | Tst | |
MeanIoULoss | 0.8600 | 0.7800 | 0.5405 | 0.8400 | 0.8200 | 0.6063 | 0.4900 | 0.5200 | 0.5404 | 0.9514 | 0.8960 | 0.8706 |
0.4800 | 0.3100 | 0.1125 | 0.4800 | 0.2900 | 0.1022 | 0.6500 | 0.6900 | 0.1280 | 0.0730 | 0.0792 | 0794 |
Model | Batch | GPU (gb) | RAM (gb) | Batch Time (ms) | Time for 5 Epoch (min) |
---|---|---|---|---|---|
VV | 10 | 39 | |||
VH | 10 | 42 | |||
DEM | 10 | 34 | |||
DFM | 10 | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Sun, X.; Wang, Z.; Cheng, I. FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring. Sensors 2022, 22, 8245. https://doi.org/10.3390/s22218245
Islam MS, Sun X, Wang Z, Cheng I. FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring. Sensors. 2022; 22(21):8245. https://doi.org/10.3390/s22218245
Chicago/Turabian StyleIslam, MD Samiul, Xinyao Sun, Zheng Wang, and Irene Cheng. 2022. "FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring" Sensors 22, no. 21: 8245. https://doi.org/10.3390/s22218245
APA StyleIslam, M. S., Sun, X., Wang, Z., & Cheng, I. (2022). FAPNET: Feature Fusion with Adaptive Patch for Flood-Water Detection and Monitoring. Sensors, 22(21), 8245. https://doi.org/10.3390/s22218245