Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
Abstract
:1. Introduction
2. Related Works: Comparison of Speed Estimation Results
3. Problem Definition and Experimental Set-Up
3.1. Experimental Set-Up
3.2. Erroneous Data Handling
4. Methods and Materials
4.1. Cross-Correlation Significance Estimation
4.2. Non-Linear Peak Suppression
4.3. Regional Signals Correction Algorithm
Algorithm 1: regional signals correction |
1: align modul1 and modul2 by average traffic speed |
2: diff = modul1 − modul2 |
3: [Q1, Q3] = interquartile (diff) |
4: if (diff(i) < Q1 or diff(i) > Q3) then |
5: diff(i) = [Q1 or Q3] |
6: end if |
7: corrected_modul1 = modul1 − diff |
8: speed = |
9: result speed |
4.4. Signals Segmentation Algorithm
Algorithm 2: Signals segmentation |
1: deriv1(2) = derivative (modul1(2)) |
2: zeros1(2) = zero_crossing (deriv1(2)) |
3: for ; length(zeros1); ) |
4: sub1 = modul1[ 0:zeros1[ ] ] |
5: sub2 = modul2[ 0:zeros2[ ] ] |
6: speed = |
7: add speed into S_LIST |
8: end for |
9: for length(zeros1); ) |
10: sub1 = modul1[ zeros1[]:end ] |
11: sub2 = modul2[ zeros2[]:end ] |
12: speed = |
13: add speed into S_LIST |
14: end for |
15: result S_LIST |
5. Results and Discussion
5.1. Non-Linear Signal Suppression Correction Results
5.2. Estimation Results of Signal Segmentation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soni, N.; Malekian, R.; Andriukaitis, D.; Navikas, D. Internet of Vehicles based approach for road safety applications using sensor technologies. Wirel. Pers. Commun. 2019, 105, 1257–1284. [Google Scholar] [CrossRef] [Green Version]
- Prauzek, M.; Konecny, J. Optimizing of Q-Learning Day/Night Energy Strategy for Solar Harvesting Environmental Wireless Sensor Networks Nodes. Electron. Electr. Eng. 2021, 27, 50–56. [Google Scholar] [CrossRef]
- Hassan, A.N.; Abdullah, A.H.; Kaiwartya, O.; Cao, Y.; Sheet, D.K. Multi-metric geographic routing for vehicular ad hoc networks. Wirel. Netw. 2018, 24, 2763–2779. [Google Scholar] [CrossRef]
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’), 09 07 2021. Available online: http://data.europa.eu/eli/reg/2021/1119/oj (accessed on 24 September 2021).
- Cepenas, M.; Peng, B.; Andriukaitis, D.; Ravikumar, C.; Markevicius, V.; Dubauskiene, N.; Navikas, D.; Valinevicius, A.; Zilys, M.; Merfeldas, A.; et al. Research of PVDF Energy Harvester Cantilever Parameters for Experimental Model Realization. Electronics 2020, 9, 2030. [Google Scholar] [CrossRef]
- Skorvaga, J.; Frivaldsky, M.; Pavelek, M. Design of a Wireless Charging System for e-Scooter. Electron. Electr. Eng. 2021, 27, 40–48. [Google Scholar] [CrossRef]
- Paterova, T.; Prauzek, M. Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning. Electron. Electr. Eng. 2021, 27, 18–25. [Google Scholar] [CrossRef]
- Abdullah, R.S.A.R.; Salah, A.A.; Aziz, N.H.A.; Rasid, N.E.A. Vehicle recognition analysis in LTE based forward scattering radar. In Proceedings of the 2016 IEEE Radar Conference (Radar Conf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Khatri, H.S.; Somani, S.B. Infrared-based system for vehicle counting and classification. In Proceedings of the 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Odat, E.; Shamma, J.S.; Claudel, C. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1593–1606. [Google Scholar] [CrossRef]
- Sliwa, B.; Piatkowski, N.; Wietfeld, C. The Channel as a Traffic Sensor: Vehicle Detection and Classification Based on Radio Fingerprinting. IEEE Internet Things J. 2020, 7, 7392–7406. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Xu, T.; Yan, W.; Ma, L.; Zhang, X. Vehicle Detection and Classification Using Distributed Fiber Optic Acoustic Sensing. IEEE Trans. Veh. Technol. 2020, 69, 1363–1374. [Google Scholar] [CrossRef]
- Tsai, C.-M.; Lai, Y.-H.; Perng, J.-W.; Tsui, I.-F.; Chung, Y.-J. Design and Application of an Autonomous Surface Vehicle with an AI-Based Sensing Capability. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Dong, H.; Wang, X.; Zhang, C.; He, R.; Jia, L.; Qin, Y. Improved Robust Vehicle Detection and Identification Based on Single Magnetic Sensor. IEEE Access 2018, 6, 5247–5255. [Google Scholar] [CrossRef]
- Bernas, M.; Płaczek, B.; Korski, W.; Loska, P.; Smyła, J.; Szymała, P. A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring. Sensors 2018, 18, 3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholamhosseinian, A.; Seitz, J. Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective. IEEE Open J. Intell. Transp. Syst. 2021, 2, 173–194. [Google Scholar] [CrossRef]
- Markevicius, V.; Navikas, D.; Miklusis, D.; Andriukaitis, D.; Valinevicius, A.; Zilys, M.; Cepenas, M. Analysis of Methods for Long Vehicles Speed Estimation Using Anisotropic Magneto-Resistive (AMR) Sensors and Reference Piezoelectric Sensor. Sensors 2020, 20, 3541. [Google Scholar] [CrossRef] [PubMed]
- Dawton, B.; Ishida, S.; Hori, Y.; Uchino, M.; Arakawa, Y.; Tagashira, S.; Fukuda, A. Initial Evaluation of Vehicle Type Identification using Roadside Stereo Microphones. In Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia, 9–11 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Obertov, D.; Andrievsky, B. Vehicle classification using measurements from accelerometers mounted on the road surface. In Proceedings of the 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2–5 September 2014; pp. 413–417. [Google Scholar] [CrossRef]
- Ajitha, P.; Jeyakumar, S.; Krishna, K.Y.N.; Sivasangari, A. Vehicle Model Classification Using Deep Learning. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 1544–1548. [Google Scholar] [CrossRef]
- Balid, W.; Tafish, H.; Refai, H.H. Intelligent Vehicle Counting and Classification Sensor for Real-Time Traffic Surveillance. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1784–1794. [Google Scholar] [CrossRef]
- Coifman, B.; Kim, S. Speed estimation and length based vehicle classification from freeway single-loop detectors. Transp. Res. Part C Emerg. Technol. 2009, 17, 349–364. [Google Scholar] [CrossRef]
- Balid, W.; Refai, H.H. On the development of self-powered iot sensor for real-time traffic monitoring in smart cities. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Kim, D.-H.; Choi, K.-H.; Li, K.-J.; Lee, Y.-S. Performance of vehicle speed estimation using wireless sensor networks: A region-based approach. J. Supercomput. 2014, 71, 2101–2120. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Yuan, H. An Antiinterference Traffic Speed Estimation System With Wireless Magnetic Sensor Network. IEEE Trans. Ind. Inform. 2020, 16, 2458–2468. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, D.; Choi, K. A single node vehicle detection system using an adaptive signal adjustment technique. In Proceedings of the 2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC), Bali, Indonesia, 17–20 December 2017; pp. 349–353. [Google Scholar] [CrossRef]
- Taghvaeeyan, S.; Rajamani, R. Portable Roadside Sensors for Vehicle Counting, Classification, and Speed Measurement. IEEE Trans. Intell. Transp. Syst. 2014, 15, 73–83. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, F. A Cross-Correlation Technique for Vehicle Detections in Wireless Magnetic Sensor Network. IEEE Sens. J. 2016, 16, 4484–4494. [Google Scholar] [CrossRef]
- Miklusis, D.; Markevicius, V.; Navikas, D.; Cepenas, M.; Balamutas, J.; Valinevicius, A.; Zilys, M.; Cuinas, I.; Klimenta, D.; Andriukaitis, D. Research of Distorted Vehicle Magnetic Signatures Recognitions, for Length Estimation in Real Traffic Conditions. Sensors 2021, 21, 7872. [Google Scholar] [CrossRef]
- Ma, W.; Xing, D.; McKee, A.; Bajwa, R.; Flores, C.; Fuller, B.; Varaiya, P. A Wireless Accelerometer-Based Automatic Vehicle Classification Prototype System. IEEE Trans. Intell. Transp. Syst. 2014, 15, 104–111. [Google Scholar] [CrossRef]
Author | Sensor Spacing | Speed Error | Description |
---|---|---|---|
B. Coifman et al. [22] | Single sensor | Up to 60 km/h | Single-loop detector and speed estimation from a measurement of many vehicles. Moving median speed estimation. |
W. Balid et al. [23] | 6 m | MAPE 5.1% | System tested on the highway. Speed estimated algorithm based on arrival moment detection (threshold approach). |
D-H. Kim et al. [24] | 6 m | MAPE 1.2% | Modified cross-correlation algorithm with only region of interest from the signals. System tested in the field with vehicles at velocities from26 km/h to 123 km/h. |
Z. Zhang et al. [25] | 8 m | MAPE 7.5% | MAPE in unconstrained traffic mode 7.5%—constrained 2.6%. Speed is estimated from the time gap between two vehicle events. |
Y. Kwon et al. [26] | 0.2 m | MAPE 2.1% | Speed estimated using cross-correlation algorithm. Vehicles at speed up to 70 km/h. |
S. Taghvaeeyan et al. [27] | 0.9 m | MAPE 2.5% | Speed estimated using cross-correlation and discrete Fourier transform algorithms, vehicles speed up to 96 km/h. |
H. Zhu et al. [28] | 5 m | MAPE 5% | Speed estimated using cross-correlation algorithm, vehicles speed up to 50 km/h. |
V. Markevicius et al. [17,29] | 0.3 m | MAPE 2.6% | Vehicles at velocities up to 120 km/h. System tested with all kinds of vehicles in un-constrain traffic conditions. |
(1) Unscaled sig. | (2) Scaled sig. a = 1.5 | (3) Scaled sig. a = 2 | (4) Scaled 1st deriv. a = 1.5 | (5) Filter LP 30 Hz, a = 1 | (6) Filter LP 10 Hz, a = 1 | |
---|---|---|---|---|---|---|
Regular signature group | ||||||
MAPE, % | 3.0 | 3.4 | 3.2 | 3.5 | 3.5 | 5.6 |
STD, % | 3.5 | 4.4 | 4.2 | 5.5 | 4.3 | 8.9 |
ABS max % | 13.1 | 24.3 | 24.3 | 52.0 | 26.3 | 75.2 |
Distorted signature group | ||||||
MAPE, % | 11.3 | 9.8 | 9.2 | 28.5 | 10.2 | 13.4 |
STD, % | 25.1 | 15.1 | 14.3 | 56.8 | 17.4 | 20.8 |
ABS max % | 129.4 | 57.2 | 50.0 | 229.8 | 63.6 | 70.6 |
Test, No# | Actual Speed, m/s | Estimated Speed, m/s | Estimated Speed Error, % | |||||
---|---|---|---|---|---|---|---|---|
Signature | Deri. 1st Half | Deri. 2nd Half | Signature | Deri. 1st Half | Deri. 2nd Half | Corrected Speed Error | ||
1 | 16.7 | 10.5 | 9.5 | 120.0 | 37 | 43 | −620 | 43 |
2 | 20.0 | 20.7 | −17.0 | 18.7 | −3 | 185 | 7 | 7 |
3 | 26.1 | 40.0 | 60.0 | 27.2 | −53 | −130 | −4 | −4 |
4 | 15.4 | 35.3 | 6.0 | −17.0 | −129 | 61 | 210 | 61 |
5 | 18.2 | 25.0 | 24.0 | 46.0 | −37 | −32 | −153 | −32 |
6 | 30.0 | 27.3 | 40.0 | 23.0 | 9 | −33 | 23 | 23 |
7 | 26.1 | 22.2 | 22.2 | 27.3 | 15 | 15 | −5 | 15 |
8 | 17.1 | 12.2 | 11.5 | 12.8 | 29 | 33 | 25 | 33 |
9 | 21.4 | 19.4 | 20.0 | 12.7 | 9 | 7 | 41 | 41 |
10 | 18.2 | 20.7 | 23.0 | 20.7 | −14 | −26 | −14 | −14 |
11 | 15.4 | 16.2 | 18.8 | 15.8 | −5 | −22 | −3 | −3 |
12 | 15.8 | 13.0 | 12.5 | 13.0 | 18 | 21 | 18 | 21 |
13 | 28.6 | 30.0 | 31.6 | 37.5 | −5 | −11 | −31 | −11 |
14 | 22.2 | 24.0 | 23.0 | 27.2 | −8 | −4 | −22 | −4 |
15 | 26.1 | 23.1 | 28.5 | 23.0 | 11 | −9 | 12 | 12 |
16 | 21.4 | 19.4 | 20.0 | 18.8 | 9 | 7 | 12 | 9 |
17 | 20.7 | 21.4 | 20.7 | 20.7 | −3 | 0 | 0 | 0 |
18 | 23.1 | 21.4 | 22.2 | 20.7 | 7 | 4 | 10 | 7 |
19 | 21.4 | 24.0 | 22.2 | 25.0 | −12 | −4 | −17 | −4 |
20 | 11.3 | 10.7 | 12.0 | 11.3 | 6 | −6 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklusis, D.; Markevicius, V.; Navikas, D.; Ambraziunas, M.; Cepenas, M.; Valinevicius, A.; Zilys, M.; Okarma, K.; Cuinas, I.; Andriukaitis, D. Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors. Sensors 2022, 22, 8269. https://doi.org/10.3390/s22218269
Miklusis D, Markevicius V, Navikas D, Ambraziunas M, Cepenas M, Valinevicius A, Zilys M, Okarma K, Cuinas I, Andriukaitis D. Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors. Sensors. 2022; 22(21):8269. https://doi.org/10.3390/s22218269
Chicago/Turabian StyleMiklusis, Donatas, Vytautas Markevicius, Dangirutis Navikas, Mantas Ambraziunas, Mindaugas Cepenas, Algimantas Valinevicius, Mindaugas Zilys, Krzysztof Okarma, Inigo Cuinas, and Darius Andriukaitis. 2022. "Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors" Sensors 22, no. 21: 8269. https://doi.org/10.3390/s22218269
APA StyleMiklusis, D., Markevicius, V., Navikas, D., Ambraziunas, M., Cepenas, M., Valinevicius, A., Zilys, M., Okarma, K., Cuinas, I., & Andriukaitis, D. (2022). Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors. Sensors, 22(21), 8269. https://doi.org/10.3390/s22218269