Wireless Body Area Sensor Networks: Survey of MAC and Routing Protocols for Patient Monitoring under IEEE 802.15.4 and IEEE 802.15.6
Abstract
:1. Introduction
- We conduct a comprehensive survey of MAC and routing protocols of WBASNs by considering the patient monitoring systems under the standards IEEE 802.15.4 and IEEE 802.5.6; in contrast, most of the published surveys of WBASNs only focused on IEEE 802.15.6. The reason for selecting IEEE 802.15.4 along with IEEE 802.15.6 is that most industrial implementations use IEEE 802.15.4 for WBASNs. The IEEE 802.15.6 standard as a ready solution is still not available.
- The categorisation of MAC protocols for WBASNs is provided based on the literature from the period 2005 to 2019 for the IEEE 802.15.4 and IEEE 802.15.6 standards. Based on the provided categorisation, a comparative analysis of the MAC protocols is provided; these protocols optimise the IEEE 802.15.4 and IEEE 802.15.6 standards in terms of delay reliability, throughput, mobility, interference and energy consumption. In contrast, the published surveys of WBASNs cover one or two categorisations of MAC protocols by only considering IEEE 802.15.6, which is still not widely available, and most patient monitoring systems use IEEE 802.15.4.
- We provide a categorisation of the routing protocols for WBASNs for the standards IEEE 802.15.4 and IEEE 802.15.6 from the period 2005 to 2019. Although similar categorisation can be seen in the published surveys, in the published surveys, the discussion regarding open issues and challenges for each category is missing. We provide a comparative analysis of the routing protocols under each categorisation by considering various performance metrics, including delay, reliability, throughput and energy consumption. Further, under each categorisation, we provide open issues and challenges.
- We provide a detailed background of WBASNs, including architecture, topologies, standards, application requirements for chronic diseases, the benefits and use of various frequency bands, comparative analysis of WBASN’s available technologies, including LoRa and NB-IoTs, etc.
2. Background
2.1. Comparison between WSNs and WBASNs
- (1)
- Node Identification
- (2)
- Node Size
- (3)
- Network Size
- (4)
- Limited Resources
- (5)
- Mobility
2.2. WBASN Components
- (1)
- Energy Source
- (2)
- Processor
- (3)
- Memory
- (4)
- Transceiver
- (5)
- Sensors
- (6)
- Actuators
- (7)
- Operating System
2.3. WBASN Topologies
2.4. WBASN Requirements
2.5. WBASN in Healthcare
2.6. WBASN Global Connectivity
2.7. WBASN Standards
- (1)
- IEEE 802.15.6
- (2)
- IEEE 802.15.4
- (3)
- ZigBee
2.8. Power Consumption
3. Review of WBASN MAC Protocols for IEEE 802.15.4 and IEEE 802.15.6
3.1. MAC-Layer-Based and Parameter-Tuning-Based Approaches
3.2. Cross-Layer-Based Approaches
3.3. Duty-Cycle-Based Approaches
3.4. Priority-Based Approaches
3.5. Superframe Modification Approaches
4. Review of the Routing Protocols
4.1. QoS-Based Routing Protocol Comparison
- WBASNs require prioritised QoS mechanisms at the network layer to handle the heterogeneous nature of various body sensors.
- Geographical position and residual energy are the most important metrics for next-hop selection.
- End-to-end delay, reliability and packet delivery ratios are the most considered network performance parameters.
4.2. Cross-Layer-Based Routing Protocol Comparison
- Energy consumption, end-to-end delay and throughput are the main considerations.
- Most of them agree to a tree-based approach to improve energy consumption.
- Time division mechanisms are also used to provide channel guarantees.
- Transmission power should be adopted according to the distance.
4.3. Cluster-Layer-Based Routing Protocol Comparison
- Most of them are scalable.
- Efficient algorithms are used for cluster-head selection and for optimising end-to-end path selection.
4.4. Link Quality-Based Routing Protocols Comparison
5. Challenges and Open Issues
5.1. Challenges/Open Issues for MAC protocols
5.2. Challenges/Open issues for Routing Protocols
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless body area networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Shu, M.; Yuan, D.; Zhang, C.; Wang, Y.; Chen, C. A MAC protocol for medical monitoring applications of wireless body area networks. Sensors 2015, 15, 12906–12931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. Health Statistics. 2016. Available online: http://www.oecd.org/els/health-systems/health-statistics.htm (accessed on 7 September 2017).
- ZigBee. ZigBee Alliance. 2016. Available online: http://www.zigbee.org/ (accessed on 7 September 2017).
- A Research. Wireless Sensor Networks. 2011. Available online: https://www.abiresearch.com/market-research/product/1006872-wireless-sensor-networks/ (accessed on 7 September 2017).
- Qu, Y.; Zheng, G.; Ma, H.; Wang, X.; Ji, B.; Wu, H. A survey of routing protocols in WBAN for healthcare applications. Sensors 2019, 19, 1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jijesh, J. A survey on Wireless Body Sensor Network routing protocol classification. In Proceedings of the 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 5–6 January 2017; pp. 489–494. [Google Scholar]
- Hanson, M.A.; Powell, H.C., Jr.; Barth, A.T.; Ringgenberg, K.; Calhoun, B.H.; Aylor, J.H.; Lach, J. Body area sensor networks: Challenges and opportunities. Computer 2009, 42, 58–65. [Google Scholar] [CrossRef]
- Latré, B. Reliable and Energy Efficient Network Protocols for Wireless Body Area Networks. Ph.D. Thesis, Universiteit Gent, Gent, Belgium, 2008. [Google Scholar]
- Sung, M.; Marci, C.; Pentland, A. Wearable feedback systems for rehabilitation. J. Neuroeng. Rehabil. 2005, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. Development of an Augmenting Navigational Cognition System. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2005. [Google Scholar]
- Paradiso, R.; Loriga, G.; Taccini, N. A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 337–344. [Google Scholar] [CrossRef]
- Lymberis, A.; Paradiso, R. Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. Annu. Int. Conf. IEEE Eng. Med. Biol. 2008, 2008, 5270–5273. [Google Scholar]
- Di Rienzo, M.; Rizzo, F.; Parati, G.; Brambilla, G.; Ferratini, M.; Castiglioni, P. MagIC system: A new textile-based wearable device for biological signal monitoring. Applicability in daily life and clinical setting. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 7167–7169. [Google Scholar]
- Shnayder, V.; Chen, B.-r.; Lorincz, K.; Fulford-Jones, T.R.; Welsh, M. Sensor networks for medical care. Harvard Computer Science Group Technical Report TR-08-05. 2005. Available online: http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829604 (accessed on 22 September 2022).
- Monton, E.; Hernandez, J.F.; Blasco, J.M.; Hervé, T.; Micallef, J.; Grech, I.; Brincat, A.; Traver, V. Body area network for wireless patient monitoring. IET Commun. 2008, 2, 215–222. [Google Scholar] [CrossRef]
- Gyselinckx, B.; Penders, J.; Vullers, R. Potential and challenges of body area networks for cardiac monitoring. J. Electrocardiol. 2007, 40, S165–S168. [Google Scholar] [CrossRef]
- Oliver, N.; Flores-Mangas, F. HealthGear: A real-time wearable system for monitoring and analyzing physiological signals. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006; pp. 4–64. [Google Scholar]
- Leijdekkers, P.; Gay, V. A self-test to detect a heart attack using a mobile phone and wearable sensors. In Proceedings of the 21st IEEE Symposium on Computer-Based Medical Systems, Jyvaskyla, Finland, 17–19 June 2008; pp. 93–98. [Google Scholar]
- Wac, K.; Bults, R.; Van Beijnum, B.; Widya, I.; Jones, V.; Konstantas, D.; Vollenbroek-Hutten, M.; Hermens, H. Mobile patient monitoring: The MobiHealth system. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 1238–1241. [Google Scholar]
- Jiang, S.; Cao, Y.; Iyengar, S.; Kuryloski, P.; Jafari, R.; Xue, Y.; Bajcsy, R.; Wicker, S. CareNet: An integrated wireless sensor networking environment for remote healthcare. In Proceedings of the 3rd International ICST Conference on Body Area Networks, Tempe, AZ, USA, 13–15 March 2008; p. 9. [Google Scholar]
- Sheltami, T.; Mahmoud, A.; Abu-Amara, M. Warning and monitoring medical system using sensor networks. In Proceedings of the Saudi 18th national computer conference (NCC18), Riyadh, Saudi Arabia, 26–29 March 2006; pp. 63–68. [Google Scholar]
- Farella, E.; Pieracci, A.; Benini, L.; Rocchi, L.; Acquaviva, A. Interfacing human and computer with wireless body area sensor networks: The WiMoCA solution. Multimed. Tools Appl. 2008, 38, 337–363. [Google Scholar] [CrossRef]
- Nehmer, J.; Becker, M.; Karshmer, A.; Lamm, R. Living assistance systems: An ambient intelligence approach. In Proceedings of the 28th International Conference on Software Engineering, Shanghai, China, 20–28 May 2006; pp. 43–50. [Google Scholar]
- Park, P.; Fischione, C.; Bonivento, A.; Johansson, K.H.; Sangiovanni-Vincent, A. Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Trans. Mob. Comput. 2011, 10, 821–838. [Google Scholar] [CrossRef]
- Werner-Allen, G.; Lorincz, K.; Johnson, J.; Lees, J.; Welsh, M. Fidelity and yield in a volcano monitoring sensor network. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation, Seattle, WA, USA, 6–8 November 2006; pp. 381–396. [Google Scholar]
- Buettner, M.; Yee, G.V.; Anderson, E.; Han, R. X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 1–3 November 2006; pp. 307–320. [Google Scholar]
- Speranzon, A.; Fischione, C.; Johansson, K.H.; Sangiovanni-Vincentelli, A. A distributed minimum variance estimator for sensor networks. IEEE J. Sel. Areas Commun. 2008, 26, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Witrant, E.; Park, P.G.; Johansson, M.; Fischione, C.; Johansson, K.H. Predictive control over wireless multi-hop networks. In Proceedings of the 2007 IEEE International Conference on Control Applications, Singapore, 1–3 October 2007; pp. 1037–1042. [Google Scholar]
- Schenato, L.; Sinopoli, B.; Franceschetti, M.; Poolla, K.; Sastry, S.S. Foundations of control and estimation over lossy networks. Proc. IEEE 2007, 95, 163–187. [Google Scholar] [CrossRef] [Green Version]
- Hespanha, J.P.; Naghshtabrizi, P.; Xu, Y. A survey of recent results in networked control systems. Proc. IEEE 2007, 95, 138–162. [Google Scholar] [CrossRef] [Green Version]
- Moyne, J.R.; Tilbury, D.M. The emergence of industrial control networks for manufacturing control, diagnostics, and safety data. Proc. IEEE 2007, 95, 29–47. [Google Scholar] [CrossRef]
- Willig, A. Recent and emerging topics in wireless industrial communications: A selection. IEEE Trans. Ind. Inform. 2008, 4, 102–124. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.M.; Wollenberg, B.F. Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Mag. 2005, 3, 34–41. [Google Scholar] [CrossRef]
- Ehsan, S.; Hamdaoui, B. A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 2012, 14, 265–278. [Google Scholar] [CrossRef]
- Fernandes, D.; Ferreira, A.G.; Abrishambaf, R.; Mendes, J.; Cabral, J. Survey and Taxonomy of Transmissions Power Control Mechanisms for Wireless Body Area Networks. IEEE Commun. Surv. Tutor. 2017, 20, 1292–1328. [Google Scholar] [CrossRef]
- Hajar, M.S.; Shadi, M.; Al-Kadri, M.O.; Kalutarage, H.K. A survey on wireless body area networks: Architecture, security challenges and research opportunities. Comput. Secur. 2021, 104, 102211. [Google Scholar]
- Liu, Q.; Mkongwa, K.G.; Zhang, C. Performance issues in wireless body area networks for the healthcare application: A survey and future prospects. SN Appl. Sci. 2021, 3, 1–19. [Google Scholar] [CrossRef]
- Zhang, K.; Soh, P.J.; Yan, S. Meta-wearable antennas—A review of metamaterial based antennas in wireless body area networks. Materials 2020, 14, 149. [Google Scholar] [CrossRef] [PubMed]
- Fotouhi, M.; Bayat, M.; Das, A.K.; Far, H.A.N.; Pournaghi, S.M.; Doostari, M. A lightweight and secure two-factor authentication scheme for wireless body area networks in health-care IoT. Comput. Netw. 2020, 177, 107333. [Google Scholar] [CrossRef]
- Muhammad, A.; Jamal, T.; Adeel, M.; Hassan, A.; Butt, S.A.; Ajaz, A.; Gulzar, M. Challenges in wireless body area network. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 336–341. [Google Scholar]
- Sangaiah, A.K.; Javadpour, A.; Ja’fari, F.; Pinto, P.; Ahmadi, H.; Zhang, W. CL-MLSP: The design of a detection mechanism for sinkhole attacks in smart cities. Microprocess. Microsyst. 2022, 90, 104504. [Google Scholar] [CrossRef]
- Esmaeili, M.; Jamali, S. IoT based Scheduling for Energy Saving in a Wireless Ecosystem. Wirel. Commun. 2015, 7, 329–333. [Google Scholar]
- Ersue, M.; Romascanu, D.; Schoenwaelder, J.; Sehgal, A. Management of Networks with Constrained Devices. Internet Engineering Task Force (IETF). No. rfc7548. 2070–1721. 2015. Available online: https://datatracker.ietf.org/doc/rfc7547/ (accessed on 22 September 2022).
- Bradai, N.; Fourati, L.C.; Kamoun, L. Investigation and performance analysis of MAC protocols for WBAN networks. J. Netw. Comput. Appl. 2014, 46, 362–373. [Google Scholar] [CrossRef]
- Movassaghi, S.; Abolhasan, M.; Lipman, J. A review of routing protocols in wireless body area networks. J. Netw. 2013, 8, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Chang, S.; Shen, J.; Liu, Q.; Sun, X. A lightweight multi-layer authentication protocol for wireless body area networks. Futur. Gener. Comput. Syst. 2018, 78, 956–963. [Google Scholar] [CrossRef]
- Mile, A.; Okeyo, G.; Kibe, A. Hybrid IEEE 802.15.6 Wireless Body Area Networks Interference Mitigation Model for High Mobility Interference Scenarios. Wirel. Eng. Technol. 2018, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Kim, J.G. An Improved MAC Protocol for WBAN through Modified Frame Structure. Int. J. Smart Home 2014, 8, 65–76. [Google Scholar] [CrossRef]
- Kim, T.H.; Choi, S. Priority-based delay mitigation for event-monitoring IEEE 802.15.4 LR-WPANs. IEEE Commun. Lett. 2006, 10, 213–215. [Google Scholar]
- Khan, Z.A. A Novel Patient Monitoring Framework and Routing Protocols for Energy & QoS Aware Communication in Body Area Networks. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2013. [Google Scholar]
- Li, X.; Bleakley, C.J.; Bober, W. Enhanced Beacon-Enabled Mode for improved IEEE 802.15.4 low data rate performance. Wirel. Netw. 2012, 18, 59–74. [Google Scholar] [CrossRef]
- Khanafer, M.; Guennoun, M.; Mouftah, H.T. A survey of beacon-enabled IEEE 802.15.4 MAC protocols in wireless sensor networks. IEEE Commun. Surv. Tutor. 2014, 16, 856–876. [Google Scholar] [CrossRef]
- Zhou, G.; Li, Q.; Li, J.; Wu, Y.; Lin, S.; Lu, J.; Wan, C.-Y.; Yarvis, M.D.; Stankovic, J.A. Adaptive and Radio-Agnostic QoS for Body Sensor Networks. TECS 2011, 10, 1–34. [Google Scholar] [CrossRef]
- Khan, Z.A.; Sivakumar, S.; Phillips, W.; Aslam, N. A new patient monitoring framework and Energy-aware Peering Routing Protocol (EPR) for Body Area Network communication. J. Ambient. Intell. Humaniz. Comput. 2014, 5, 409–423. [Google Scholar] [CrossRef]
- Khan, Z.A.; Sivakumar, S.; Phillips, W.; Robertson, B. A QoS-aware routing protocol for reliability sensitive data in hospital body area networks. Procedia Comput. Sci. 2013, 19, 171–179. [Google Scholar] [CrossRef] [Green Version]
- IETF. IPv6 over Low Power WPAN (6lowpan). 2015. Available online: https://datatracker.ietf.org/wg/6lowpan/about/ (accessed on 12 December 2017).
- IETF. IPv6 over Networks of Resource-Constrained Nodes (6lo). 2017. Available online: https://datatracker.ietf.org/wg/6lo/documents/ (accessed on 12 August 2019).
- IETF. IPv6 over the TSCH Mode of IEEE 802.15.4e (6tisch). 2017. Available online: https://datatracker.ietf.org/wg/6tisch/documents/ (accessed on 7 September 2019).
- ISA. 2016. Available online: https://www.isa.org/ (accessed on 15 April 2019).
- IEEE. IEEE 802.15.4 Standard. 2015. Available online: https://standards.ieee.org/findstds/standard/802.15.4-2015.html (accessed on 10 September 2019).
- IEEE Std 802.15.6; IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks; IEEE: New York, NY, USA, 2012.
- Akbar, M.; Yu, H.; Cang, S. TMP: Tele-Medicine Protocol for Slotted 802.15.4 with Duty-Cycle Optimization in Wireless Body Area Sensor Networks. IEEE Sens. 2016, 17, 1925–1936. [Google Scholar] [CrossRef]
- Akbar, M.S.; Yu, H.; Cang, S. Delay, Reliability, and Throughput Based QoS Profile: A MAC Layer Performance Optimization Mechanism for Biomedical Applications in Wireless Body Area Sensor Networks. J. Sens. 2016, 2016, 7170943. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.S.; Yu, H.; Cang, S. IEEE 802.15.4 Frame Aggregation Enhancement to Provide High Performance in Life-Critical Patient Monitoring Systems. Sensors 2017, 17, 241. [Google Scholar] [CrossRef] [Green Version]
- Alliance, Z. 802-15-4 Market Report–Member Discount. 2016. Available online: http://www.zigbee.org/802-15-4-market-report-member-discount/ (accessed on 6 March 2018).
- ZigBee Technology Tutorial. 2016. Available online: http://www.radio-electronics.com/info/wireless/zigbee/zigbee.php (accessed on 15 November 2019).
- Patel, M.; Wang, J. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun. 2010, 17, 80–88. [Google Scholar] [CrossRef]
- Lam, S.S. A carrier sense multiple access protocol for local networks. Comput. Netw. (1976) 1980, 4, 21–32. [Google Scholar] [CrossRef]
- Park, P.; Fischione, C.; Johansson, K.H. Adaptive IEEE 802.15.4 protocol for energy efficient, reliable and timely communications. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, Stockholm, Sweden, 12–16 April 2010; pp. 327–338. [Google Scholar]
- Pollin, S.; Ergen, M.; Ergen, S.C.; Bougard, B.; van der Perre, L.; Moerman, I.; Bahai, A.; Varaiya, P.; Catthoor, F. Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Trans. Wirel. Commun. 2008, 7, 3359–3371. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-H.; al Rasyid, M.U.H.; Wu, H.-K. Analysis of superframe adjustment and beacon transmission for IEEE 802.15.4 cluster tree networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 219. [Google Scholar] [CrossRef] [Green Version]
- Casilari, E.; Hurtado-Duenas, J.; Cano-Garcia, J. A study of policies for beacon scheduling in 802.15.4 cluster-tree networks. In Proceedings of the 9th WSEAS International Conference on Applied Computer Science, Genova, Italy, 17–19 October 2009; pp. 124–129. [Google Scholar]
- Yen, L.-H.; Law, Y.W.; Palaniswami, M. Risk-aware beacon scheduling for tree-based ZigBee/IEEE 802.15.4 wireless networks. In Proceedings of the 4th International Conference on Wireless Internet, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Maui, HI, USA, 17–19 November 2008; p. 79. [Google Scholar]
- Neugebauer, M.; Plonnigs, J.; Kabitzsch, K. A new beacon order adaptation algorithm for IEEE 802.15.4 networks. In Proceedings of the Second European Workshop on Wireless Sensor Networks, Istanbul, Turkey, 2 February 2005; pp. 302–311. [Google Scholar]
- IEEE Standard for Low-Rate Wireless Networks. In IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), 22 April 2016. pp. 1–709. Available online: https://ieeexplore.ieee.org/document/7460875 (accessed on 22 September 2022).
- Ramachandran, I.; Das, A.K.; Roy, S. Analysis of the contention access period of IEEE 802.15.4 MAC. ACM Trans. Sens. Netw. (TOSN) 2007, 3, 4. [Google Scholar] [CrossRef]
- Anastasi, G.; Conti, M.; di Francesco, M. A comprehensive analysis of the MAC unreliability problem in IEEE 802.15.4 wireless sensor networks. IEEE Trans. Ind. Inform. 2011, 7, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, G.; Conti, M.; di Francesco, M. The MAC unreliability problem in IEEE 802.15.4 wireless sensor networks. In Proceedings of the 12th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Tenerife, Spain, 26–29 October 2009; pp. 196–203. [Google Scholar]
- Ko, J.-G.; Cho, Y.-H.; Kim, H. Performance evaluation of IEEE 802.15.4 MAC with different backoff ranges in wireless sensor networks. In Proceedings of the 10th IEEE Singapore International Conference on Communication Systems, Singapore, 30 October–1 November 2006; pp. 1–5. [Google Scholar]
- Kim, M.; Kang, C.-H. Priority-based service-differentiation scheme for IEEE 802.15.4 sensor networks in nonsaturation environments. IEEE Trans. Veh. Technol. 2010, 59, 3524–3535. [Google Scholar] [CrossRef]
- Bhar, J. A Mac protocol implementation for wireless sensor network. J. Comput. Netw. Commun. 2015, 2015, 1. [Google Scholar] [CrossRef]
- Nefzi, B.; Song, Y.Q.; Koubaa, A.; Alves, M. Improving the IEEE 802.15.4 slotted CSMA/CA MAC for time-critical events in wireless sensor networks. In Proceedings of the 5th Intl Workshop on Real Time Networks, Dresden, Germany, 5–7 July 2006. [Google Scholar]
- Di Francesco, M.; Anastasi, G.; Conti, M.; Das, S.K.; Neri, V. Reliability and energy-efficiency in IEEE 802.15.4/ZigBee sensor networks: An adaptive and cross-layer approach. IEEE J. Sel. Areas Commun. 2011, 29, 1508–1524. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, P.; Park, P.; Fischione, C.; Johansson, K.H. TREnD: A timely, reliable, energy-efficient and dynamic wsn protocol for control applications. In Proceedings of the IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–6. [Google Scholar]
- Lee, B.-H.; Wu, H.-K. Study on a dynamic superframe adjustment algorithm for IEEE 802.15.4 LR-WPAN. In Proceedings of the 71st Vehicular Technology Conference, Taipei, Taiwan, 16–19 May 2010; pp. 1–5. [Google Scholar]
- Jeon, J.; Lee, J.W.; Ha, J.Y.; Kwon, W.H. DCA: Duty-cycle adaptation algorithm for IEEE 802.15.4 beacon-enabled networks. In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring, Dublin, Ireland, 22–25 April 2007; pp. 110–113. [Google Scholar]
- Hurtado-López, J.; Casilari, E. An adaptive algorithm to optimize the dynamics of IEEE 802.15.4 networks. In International Conference on Mobile Networks and Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 136–148. [Google Scholar]
- Alberola, R.d.; Pesch, D. Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Netw. 2012, 10, 664–679. [Google Scholar] [CrossRef]
- Shi, A.; Tan, G.; Chen, G.; Xu, L. An Improved CSMA-CA Protocol for Real-Time Abnormal Events Monitoring. J. Comput. Inf. Syst. 2011, 7, 3299–3308. [Google Scholar]
- Ndih, E.N.; Khaled, N.; de Micheli, G. An analytical model for the contention access period of the slotted IEEE 802.15.4 with service differentiation. In Proceedings of the IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–6. [Google Scholar]
- Severino, R.; Batsa, M.; Alves, M.; Koubaa, A. A Traffic Differentiation Add-On to the 802.15.4 Protocol: Implementation and Experimental Validation over a Real-Time Operating System. In Proceedings of the 13th Euromicro Conference on Digital System Design: Architectures, Methods, and Tools (DSD’10), Lille, France, 1–3 September 2010; pp. 501–508. [Google Scholar]
- Jardosh, S.; Ranjan, P.; Rawal, D. Prioritized IEEE 802.15.4 for wireless sensor networks. In Proceedings of the IEEE Wireless Advanced, London, UK, 27–29 June 2010; pp. 1–7. [Google Scholar]
- Khan, Z.; Rasheed, M.B.; Javaid, N.; Robertson, B. Effect of packet inter-arrival time on the energy consumption of beacon enabled MAC protocol for body area networks. Procedia Comput. Sci. 2014, 32, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Anjum, I.; Alam, N.; Razzaque, M.A.; Hassan, M.M.; Alamri, A. Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. Int. J. Distrib. Sens. Netw. 2013, 9, 205192. [Google Scholar] [CrossRef]
- Li, C.; Hao, B.; Zhang, K.; Liu, Y.; Li, J. A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. J. Med. Syst. 2011, 35, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Hao, R.; Li, J.; Xiong, N.; Yang, L.T.; Zhang, Y. Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks. J. Syst. Archit. 2013, 59, 1231–1242. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, A.; Xu, J.; Su, S. An optimal fuzzy control medium access in wireless body area networks. Neurocomputing 2014, 142, 107–114. [Google Scholar] [CrossRef]
- Shuai, J.; Zou, W.; Zhou, Z. Priority-based adaptive timeslot allocation scheme for wireless body area network. In Proceedings of the 2013 13th International Symposium on Communications and Information Technologies (ISCIT), Surat Thani, Thailand, 4–6 September 2013; pp. 609–614. [Google Scholar]
- Otal, B.; Alonso, L.; Verikoukis, C. Highly reliable energy-saving mac for wireless body sensor networks in healthcare systems. IEEE J. Sel. Areas Commun. 2009, 27, 553–565. [Google Scholar] [CrossRef]
- Marinkovic, S.J.; Popovici, E.M.; Spagnol, C.; Faul, S.; Marnane, W.P. Energy-Efficient Low Duty Cycle MAC Protocol for Wireless Body Area Networks. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 915–925. [Google Scholar] [CrossRef]
- Su, H.; Zhang, X. Battery-dynamics driven tdma mac protocols for wireless body-area monitoring networks in healthcare applications. IEEE J. Sel. Areas Commun. 2009, 27, 424–434. [Google Scholar] [CrossRef]
- Ali, K.A.; Sarker, J.H.; Mouftah, H.T. Urgency-Based MAC Protocol for Wireless Sensor Body Area Networks. In Proceedings of the 2010 IEEE International Conference on Communications Workshops, Cape Town, South Africa, 23–27 May 2010. [Google Scholar]
- Li, C.; Li, J.; Zhen, B.; Li, H.-B.; Kohno, R. Hybrid Unified-Slot Access Protocol for Wireless Body Area Networks. Int. J. Wirel. Inf. Networks 2010, 17, 150–161. [Google Scholar] [CrossRef]
- Yoon, J.S.; Ahn, G.-S.; Joo, S.-S.; Lee, M.J. PNP-MAC: Preemptive Slot Allocation and Non-Preemptive Transmission for Providing QoS in Body Area Networks. In Proceedings of the 2010 7th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 9–12 January 2010. [Google Scholar]
- Liu, B.; Yan, Z.; Chang, C.W. CA-MAC: A Hybrid context-aware MAC protocol for wireless body area networks. In Proceedings of the 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, Columbia, MO, USA, 13–15 June 2011. [Google Scholar]
- Huq, M.A.; Dutkiewicz, E.; Gengfa, F.; Ping, L.R.; Vesilo, R. MEB MAC: Improved Channel Access Scheme for Medical Emergency Traffic in WBAN; Institute of Electrical & Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012. [Google Scholar]
- Mouzehkesh, N.; Zia, T.; Shafigh, S.; Zheng, L. D2MAC: Dynamic delayed Medium Access Control (MAC) protocol with fuzzy technique for Wireless Body Area Networks. In Proceedings of the IEEE International Conference on Body Sensor Networks, Cambridge, MA, USA, 6–9 May 2013; pp. 1–6. [Google Scholar]
- Yuan, J.; Li, C.; Zhu, W. Energy-Efficient MAC in Wireless Body Area Networks. In Proceedings of the International Conference on Information Science and Technology Applications, Macau, China, 17–19 June 2013; pp. 21–24. [Google Scholar]
- Wang, R.; Wang, H.; Roman, H.E.; Wang, Y.; Xu, D. A cooperative medium access control protocol for mobile clusters in wireless body area networks. In Proceedings of the 2013 First International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), Jinhua, China, 1–3 July 2013; pp. 1–4. [Google Scholar]
- Masud, F.; Abdullah, A.H.; Altameem, A.; Abdul-Salaam, G.; Muchtar, F. Traffic class prioritization-based slotted-CSMA/CA for IEEE 802.15.4 MAC in intra-WBANs. Sensors 2019, 19, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.; Jin, Z.; Cho, J. Design and implementation of a single radio multi-channel MAC protocol on IEEE 802.15.4 for WBAN. In Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication, Siem Reap, Cambodia, 9–11 January 2014; pp. 1–8. [Google Scholar]
- Ullah, S.; Imran, M.; Alnuem, M. A hybrid and secure priority-guaranteed MAC protocol for wireless body area network. Int. J. Distrib. Sens. Netw. 2014, 10, 481761. [Google Scholar] [CrossRef] [Green Version]
- Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Verikoukis, C. HEH-BMAC: Hybrid polling MAC protocol for WBANs operated by human energy harvesting. Telecommun. Syst. 2014, 58, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Wang, C.; Xiao, L. RC-MAC: A receiver-centric MAC protocol for event-driven wireless sensor networks. IEEE Trans. Comput. 2014, 64, 1149–1161. [Google Scholar] [CrossRef]
- Bhandari, S.; Moh, S. A priority-based adaptive MAC protocol for wireless body area networks. Sensors 2016, 16, 401. [Google Scholar] [CrossRef] [Green Version]
- Moulik, S.; Misra, S.; Das, D. AT-MAC: Adaptive MAC-frame Payload Tuning for Reliable Communication in Wireless Body Area Networks. IEEE Trans. Mob. Comput. 2016, 16, 1516–1529. [Google Scholar] [CrossRef]
- Yu, J.; Park, L.; Park, J.; Cho, S.; Keum, C. CoR-MAC: Contention over Reservation MAC Protocol for Time-Critical Services in Wireless Body Area Sensor Networks. Sensors 2016, 16, 656. [Google Scholar] [CrossRef] [Green Version]
- Zuhra, F.T.; Bin Abu Bakar, K.; Arain, A.A.; Khan, U.A.; Bhangwar, A.R. MIQoS-RP: Multi-Constraint Intra-BAN, QoS-Aware Routing Protocol for Wireless Body Sensor Networks. IEEE Access 2020, 8, 99880–99888. [Google Scholar] [CrossRef]
- Mkongwa, K.G.; Zhang, C.; Liu, Q. A Reliable Data Transmission Mechanism in Coexisting IEEE 802.15. 4-Beacon Enabled Wireless Body Area Networks. Wirel. Pers. Commun. 2022, 1–22. [Google Scholar] [CrossRef]
- Bhandari, S.; Moh, S. A Mac Protocol with Dynamic Allocation of Time Slots Based on Traffic Priority in Wireless Body Area Networks. Int. J. Comput. Netw. Commun. 2019, 11, 25–41. [Google Scholar] [CrossRef]
- Hsueh-Wen, T.; Wang, Y.; Yang, Y.; Wu, R. An Adaptive Channel Hopping Scheme in IEEE 802.15. 6-Based Wireless Body Area Networks. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 402–406. [Google Scholar]
- Maitra, T.; Roy, S. PBDT: An Energy-Efficient Posture based Data Transmission for Repeated Activities in BAN Mobile Networks and Applications. Mobile Netw. Appl. 2020, 25, 328–340. [Google Scholar] [CrossRef]
- Gomez, C.; Boix, A.; Paradells, J. Impact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15.4 multihop networks. EURASIP J. Wirel. Commun. Netw. 2010, 2010, 205407. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Chen, J.; Cheng, Y.; Shen, X.S.; Sun, Y. An Analytical MAC Model for IEEE 802.15.4 Enabled Wireless Networks with Periodic Traffic. IEEE Trans. Wirel. Commun. 2015, 14, 5261–5273. [Google Scholar] [CrossRef]
- Yousaf, S.; Javaid, N.; Qasim, U.; Alrajeh, N.; Khan, Z.A.; Ahmed, M. Towards Reliable and Energy-Efficient Incremental Cooperative Communication for Wireless Body Area Networks. Sensors 2016, 16, 284. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.; Misra, S. Dynamic Connectivity Establishment and Cooperative Scheduling for QoS-Aware Wireless Body Area Networks. IEEE Trans. Mob. Comput. 2018, 17, 2775–2788. [Google Scholar] [CrossRef]
- Samanta, A.; Bera, S.; Misra, S. Link-quality-aware resource allocation with load balance in wireless body area networks. IEEE Syst. J. 2018, 12, 74–81. [Google Scholar] [CrossRef]
- Hur, K.; Sohn, W.-S.; Kim, J.-K.; Lee, Y. Novel MAC protocol and middleware designs for wearable sensor-based systems for health monitoring. Int. J. Distrib. Sens. Netw. 2013, 9, 404168. [Google Scholar] [CrossRef]
- Xia, F.; Hao, R.; Cao, Y.; Xue, L. A survey of adaptive and real-time protocols based on IEEE 802.15.4. Int. J. Distrib. Sensors Netw. 2011, 2, 1–11. [Google Scholar] [CrossRef]
- Kim, E.-J.; Kim, M.; Youm, S.-K.; Choi, S.; Kang, C.-H. Priority-based service differentiation scheme for IEEE 802.15.4 sensor networks. AEU-Int. J. Electron. Commun. 2007, 61, 69–81. [Google Scholar] [CrossRef]
- Khan, Z.; Sivakumar, S.; Phillips, W.; Robertson, B. QPRD: QoS-aware peering routing protocol for delay sensitive data in hospital body area network communication. In Proceedings of the Seventh International Conference on Broadband, Wireless Computing, Communication and Applications, Victoria, BC, Canada, 12–14 November 2012; pp. 178–185. [Google Scholar]
- Razzaque, M.A.; Hong, C.S.; Lee, S. Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors 2011, 11, 917–937. [Google Scholar] [CrossRef]
- Djenouri, D.; Balasingham, I. New QoS and geographical routing in wireless biomedical sensor networks. In Proceedings of the 2009 Sixth International Conference on Broadband Communications, Networks, and Systems, Madrid, Spain, 14–16 September 2009; pp. 1–8. [Google Scholar]
- Liang, X.; Balasingham, I.; Byun, S.-S. A reinforcement learning based routing protocol with QoS support for biomedical sensor networks. In Proceedings of the 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, 25–28 October 2008; pp. 1–5. [Google Scholar]
- Ibrahim, A.A.; Bayat, O.; Ucan, O.N.; Eleruja, S.A. EN-NEAT: Enhanced Energy Efficient Threshold-Based Emergency Data Transmission Routing Protocol for Wireless Body Area Network. In Proceedings of the Third International Congress on Information and Communication Technology, Singapore, 29 September 2018; Springer: Singapore, 2018; pp. 325–334. [Google Scholar]
- Jain, S.; Singh, A. Temperature-aware routing using the secondary sink in wireless body area sensor network. Int. J. eHealth Med. Commun. 2018, 9, 38–58. [Google Scholar] [CrossRef]
- Kathe, K.S.; Deshpande, U.A. A Thermal Aware Routing Algorithm for a wireless body area network. Wirel. Pers. Commun. 2019, 105, 1353–1380. [Google Scholar] [CrossRef]
- Braem, B.; Latre, B.; Moerman, I.; Blondia, C.; Demeester, P. The wireless autonomous spanning tree protocol for multihop wireless body area networks. In Proceedings of the 2006 Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services, San Jose, CA, USA, 17–21 July 2006; pp. 1–8. [Google Scholar]
- Latre, B.; Braem, B.; Moerman, I.; Blondia, C.; Reusens, E.; Joseph, W.; Demeester, P. A low-delay protocol for multihop wireless body area networks. In Proceedings of the 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous), Philadelphia, PA, USA, 6–10 August 2007; pp. 1–8. [Google Scholar]
- Ruzzelli, A.G.; Jurdak, R.; O’Hare, G.M.; van der Stok, P. Energy-efficient multi-hop medical sensor networking. In Proceedings of the 1st ACM SIGMOBILE international Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments (HealthNet), San Juan, Puerto Rico, 11 June 2007; pp. 37–42. [Google Scholar]
- Bag, A.; Bassiouni, M.A. Biocomm–A cross-layer medium access control (MAC) and routing protocol co-design for biomedical sensor networks. Int. J. Parallel Emergent Distrib. Syst. 2009, 24, 85–103. [Google Scholar] [CrossRef]
- Liang, L.; Ge, Y.; Feng, G.; Ni, W.; Wai, A.A.P. A low overhead tree-based energy-efficient routing scheme for multi-hop wireless body area networks. Comput. Netw. 2014, 70, 45–58. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Liu, A. Cross layer design for optimizing transmission reliability, energy efficiency, and lifetime in body sensor networks. Sensors 2017, 17, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maymand, L.Z.; Ayatollahitafti, V.; Gandomi, A. Traffic control thermal-aware routing in body area networks. J. Soft Comput. Decision Supp. Syst. 2017, 4, 17–22. [Google Scholar]
- Watteyne, T.; Augé-Blum, I.; Dohler, M.; Barthel, D. Anybody: A self-organization protocol for body area networks. In Proceedings of the 2nd international conference on Body area networks, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Florence, Italy, 11–13 June 2007; pp. 1–7. [Google Scholar]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Culpepper, B.J.; Dung, L.; Moh, M. Design and analysis of Hybrid Indirect Transmissions (HIT) for data gathering in wireless micro sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2004, 8, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.; Qian, J. A power-efficient clustering protocol for coal mine face monitoring with wireless sensor networks under channel fading conditions. Sensors 2016, 16, 835. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Yi, X.; Liu, X.; Han, L. An Efficient and Reliable Directed Diffusion Routing Protocol in Wireless Body Area Networks. IEEE Access 2019, 7, 58883–58892. [Google Scholar] [CrossRef]
- Anguraj, D.K.; Kumar, D.; Smys, S. Trust-based intrusion detection and clustering approach for wireless body area networks. Wirel. Pers. Commun. 2019, 104, 1–20. [Google Scholar] [CrossRef]
- Tang, L.; Wang, K.-C.; Huang, Y.; Gu, F. Channel characterization and link quality assessment of IEEE 802.15.4-compliant radio for factory environments. IEEE Trans. Ind. Inform. 2007, 3, 99–110. [Google Scholar] [CrossRef]
- Renner, C.; Ernst, S.; Weyer, C.; Turau, V. Prediction accuracy of link-quality estimators. In Proceedings of the European Conference on Wireless Sensor Networks, Bonn, Germany, 23–25 February 2011; pp. 1–16. [Google Scholar]
- Gaertner, G.; Nuallain, E.O. Link Quality Prediction for 802.11 MANETs in Urban Microcells. J. Comput. Commun. 2016, 4, 61. [Google Scholar] [CrossRef]
- Gomez, C.; Kim, E.; Kaspar, D.; Bormann, C. Problem Statement and Requirements for 6LoWPAN Routing. 2009, IETF Internet Draft (work in progress). Available online: https://www.ietf.org/archive/id/draft-ietf-6lowpan-routing-requirements-00.html (accessed on 22 September 2022).
- Machado, K.; Rosário, D.; Cerqueira, E.; Loureiro, A.A.; Neto, A.; de Souza, J.N. A routing protocol based on energy and link quality for internet of things applications. Sensors 2013, 13, 1942–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natarajan, A.; de Silva, B.; Yap, K.-K.; Motani, M. To hop or not to hop: Network architecture for body sensor networks. In Proceedings of the 2009 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Rome, Italy, 22–26 June 2009. [Google Scholar]
- Javaid, N.; Ahmad, A.; Nadeem, Q.; Imran, M.; Haider, N. iM-SIMPLE: Improved stable increased-throughput multi-hop link efficient routing protocol for Wireless Body Area Networks. Comput. Hum. Behav. 2015, 51, 1003–1011. [Google Scholar] [CrossRef]
- Elias, J. Optimal design of energy-efficient and cost-effective wireless body area networks. Ad. Hoc. Networks 2014, 3, 560–574. [Google Scholar] [CrossRef]
- Ortiz, A.M.; Ababneh, N.; Timmons, N.; Morrison, J. Adaptive routing for multihop IEEE 802.15. 6 wireless body area networks. In Proceedings of the SoftCOM 2012, 20th International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 11–13 September 2012. [Google Scholar]
- De Francisco, R. Indoor channel measurements and models at 2.4 GHz in a hospital. In Proceedings of the Global Telecommunications Conference, Miami, FL, USA, 6–10 December 2010; pp. 1–6. [Google Scholar]
- Alliance, Z. ZigBee 2007 Specification. Available online: https://csa-iot.org/ (accessed on 12 September 2016).
- Culler, D.; Berkeley, U. HYDRO: A Hybrid Routing Protocol for Lossy and Low Power Networks Draft-Tavakoli-Hydro-01. 2009. Available online: https://www.ietf.org/archive/id/draft-tavakoli-hydro-01.html (accessed on 22 September 2022).
- Fonseca, R.; Gnawali, O.; Jamieson, K.; Levis, P. Four-Bit Wireless Link Estimation. In Proceedings of the Hot Topics in Network, Atlanta, GA, USA, 14–15 November 2007; pp. 1–7. [Google Scholar]
- Cao, Q.; He, T.; Fang, L.; Abdelzaher, T.F.; Stankovic, J.A.; Son, S.H. Efficiency Centric Communication Model for Wireless Sensor Networks. Proc. Infocom. 2006, 2026, 1–12. [Google Scholar]
- Woo, A.; Culler, D.E. Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks, Computer Science Division; University of California Oakland: Oakland, CA, USA, 2003. [Google Scholar]
- Srinivasan, K.; Levis, P. RSSI is under appreciated. In Proceedings of the Third Workshop on Embedded Networked Sensors (EmNets), Cambridge, MA, USA, 30–31 May 2006; pp. 1–5. [Google Scholar]
- Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks (No. rfc6550). 2012. Available online: https://www.rfc-editor.org/rfc/rfc6550 (accessed on 22 September 2022).
- Perkins, C.; Belding-Royer, E.; Das, S. Ad Hoc On-Demand Distance Vector (AODV) Routing (No. rfc3561). 2003. Available online: https://datatracker.ietf.org/doc/rfc3561/ (accessed on 22 September 2022).
- Butt, M.R.; Akbar, A.H.; Kim, K.-H.; Javed, M.M.; Lim, C.-S.; Taj, Q. LABILE: Link quAlity-based lexIcaL routing mEtric for reactive routing protocols in IEEE 802.15.4 networks. J. Supercomput. 2012, 62, 84–104. [Google Scholar] [CrossRef]
Sensor Nodes | Data Generation Interval | Required Data Rate (Kbps) | Delay Requirement |
---|---|---|---|
ECG | 4 ms | 34 | <125 ms |
EMG | 6 ms | 19.6 | <125 ms |
EEG | 4 ms | 19.6 | <125 ms |
SpO2 (Pulse Oximeter) | 10 ms | 13.2 | <250 ms |
BP | 10 ms | 13.2 | <250 ms |
Respiration | 40 ms | 3.2 | <250 ms |
Skin temperature | 60 s | 2.27 | <250 ms |
Glucose sensor | 250 s | 0.528 | <250 ms |
Parameters | Requirements |
---|---|
Lifetime | Long for wearable sensors and ultra-long for implanted sensors |
Covered Area | Inside and around the body |
Data Rate | Application dependent |
Setup Time | Fast |
Security | Simple and light mechanisms required |
Customisation | Configurable sensor nodes |
Fault Management | Detection mechanisms for the case of the node failure |
Quality of Service | Application dependent |
Power and Energy | Efficient energy and power mechanisms |
Medium Access Control | Controllable, scalable and reliable |
Frequency Bands | Medical bands and compatible with human tissues |
Diseases | Physiological Parameters | Biomedical Sensor Type |
---|---|---|
Cancer | Body fat sensor, weight loss indication sensor | Implantable/Wearable |
Hypertension | BP | Implantable/Wearable |
Heart Disease | ECG, BP, heart rate | Implantable/Wearable |
Asthma | Respiration and oxygen saturation | Implantable/Wearable |
Diabetes | Visual impairment | Wearable |
Rheumatoid Arthritis | Joint stiffness | Wearable |
Renal Failure | Urine output | Implantable |
Vascular Diseases | blood pressure and peripheral perfusion | Implantable/Wearable |
Infectious Diseases | Temperature | Wearable |
Stroke | Activity recognition, impaired speech, memory etc. | Implantable/Wearable |
Human-Body Communication | |
Frequency | Bandwidth |
16 MHz | 4 MHz |
27 MHz | 4 MHz |
Narrowband Communication | |
Frequency | Bandwidth |
402–405 MHz | 300 KHz |
420–450 MHz | 300 KHz |
863–870 MHz | 400 KHz |
902–928 MHz | 500 KHz |
956–956 MHz | 400 KHz |
2360–2400 MHz | 1 MHz |
2400–2438.5 MHz | 1 MHz |
UWB Communication | |
13.2–4.7 GHz | 499 MHz |
6.2–10.3 GHz | z |
Technology | Data Rate | Frequency | Modulation | Channels | Topology | Range | Setup Time | Current Values | Market Adaptability for WBASNs |
---|---|---|---|---|---|---|---|---|---|
Bluetooth Classic | 1–3 Mbps | 2.4 GHz | GFSK | 79 | Scatternet | 1–10 m | 3 s | ~45 mA | Low due to high power requirements |
Bluetooth Low Energy | 1 Mbps | 2.4 GHz | GFSK | 3 | Piconet, Star | 1–10 m | <100 s | ~28 mA | Low due to power requirements and fewer channels |
NB-IoT | 234 Kbps | 180 kHz | QPSK | 13 | Star | 35 Km | 120–300 mA | Low | |
LoRa (long range) | 290 bps-50 Kbps | 433 MHz, 868 MHz 915 MHz | SS chip | 13 channels for 915 MHz | Star | 10 Km | 32 mA | Low as it is not open-source | |
IEEE 802.15.4(LRWPAN) /ZigBee | 250 Kbps | 2.4 GHz 868 MHz 915 MHz | O-QPSK | 16 | Star, Mesh | 10–100 m | 30 s | ~16.5 mA | High for its suitability for wearable sensors in terms of QoS |
IEEE 802.15.6 | 10 Kbps -10 Mbps | 2.4 GHz, Narrowband HBC and UWB communication | D8PSK, DBPSK, DQPSK | Multiple channels according to frequency bands | Two hop Star, Mesh | 1–5 m | <3 s | ~1 mA | Still in the adoption stage as it also involves implanted sensors |
ANT | 1 Mbps | 2.4 GHz | GFSK | 125 | Star, Mesh or tree | 10–30 m | ~22 mA | Low due to high power and limited QoS | |
Sensium | 50 Kbps | 868 MHz 915 MHz | BFSK | 16 | Star | 1–5 m | <3 s | ~3 mA | Low due to its low data rates |
Zaralink ZL70101 | 50 Kbps | 402–405 MHz 433–434 MHz | 2FSK/4FSK | 10 | P2P | 1–5 m | <3 s | ~3 mA | Low due to its low data rates |
Standard | Provided Data Rate | Power Requirement | Battery Lifetime |
---|---|---|---|
WiFi | 100 Mbps | 100–1000 mW | Hours–days |
Bluetooth | 1–10 Mbps | 4–100 mW | Days–weeks |
Wibree | 600 Kbps maximum | 2–10 mW | Weeks–months |
ZigBee | 250 Kbps | 3–10 mW | Weeks–months |
802.15.4 | 250 Kbps maximum | 3–10 mW | Weeks–months |
802.15.6 | 1 Kbps–10 Mbps | 0.1–2 mW | Months–years |
MAC Optimisation Approaches | Advantages | Disadvantages |
---|---|---|
Parameter tuning |
|
|
Cross-layer |
|
|
Duty-cycle-based |
|
|
Priority-based |
|
|
Superframe modification |
|
|
Protocol | Year | Standard | Access scheme | Shortcomings | QoS |
---|---|---|---|---|---|
DQBAN [100] | 2009 | IEEE 802.15.4 | Hybrid | Requires the management of different queues as well as fuzzy-logic system implementation in every sensor node | R, C |
EELDC [101] | 2009 | IEEE 802.15.4 | TDMA | Fixed scheduling is used for data transmission, which does not fulfil the application diversity in WBASNs | E, R |
BDD [102] | 2009 | IEEE 802.15.4 | TDMA | The performance is only validated for one biomedical sensor, i.e., ECG; hence, QoS performance in a scalable environment is a concern | E |
U-MAC [103] | 2010 | IEEE 802.15.4 | Slotted ALOHA | Complex and involve overheads in terms of data categorisation and identification of retransmission packets | D |
HUA-MAC [104] | 2010 | IEEE 802.15.4 | Slotted ALOHA | Shows QoS limitations in the scalable and diverse application scenarios | D, R |
PNP-MAC [105] | 2010 | IEEE 802.15.4 | Hybrid | The traffic loads of low-priority biomedical sensors are ignored, which may cause delay and consume more energy in the case of retransmission | D, E |
CA-MAC [106] | 2011 | IEEE 802.15.4 | Hybrid | Dynamic change in the frame structure, which is not easy to implement with the IEEE 802.15.4/IEEE802.15.6 standard | R |
LDTA-MAC [58] | 2011 | IEEE 802.15.4 | Hybrid | Successful execution of such protocol requires a good synchronisation mechanism between node and superframe; moreover, a clear priority assignment scheme is missing | D |
MEB-MAC [107] | 2012 | IEEE 802.15.6 | Hybrid | Scalability is a concern as the insertion of many new slots will create QoS degradation for the other nodes of the network | D |
D2MAC [108] | 2013 | IEEE 802.15.4 | Slotted CSMA/CA | Consideration of single QoS parameters from the application, i.e., data rates to make the protocol adaptive | D |
EMAC [109] | 2013 | IEEE 802.15.4 | Hybrid | The channel characterisation and integration issues of these relay nodes are not discussed, which is an important aspect in validating performance | E |
C-MAC [110] | 2013 | IEEE 802.15.6 | TDMA-FDMA | The solution is complex due to the usage of multiple access mechanisms simultaneously, i.e., TDMA and FDMA; strong synchronisation is needed | C, M |
ATLAS [99] | 2013 | IEEE 802.15.4 | Hybrid | A detailed discussion about the backoff procedure for the waiting nodes in this modified scheme is missing; moreover, adding an additional mechanism on IEEE 802.15.4 may cause more energy consumption for sensor nodes | P |
PLA-MAC [111] | 2013 | IEEE 802.15.4 | Hybrid | To adopt this mechanism, more energy sources are required, whereas energy efficiency computation is not discussed in the simulations | P, R |
Single-radio multi-channel TDMA MAC protocol [112] | 2014 | IEEE 802.15.4 | TDMA | The management of multi-channels is still challenging due to co-channel interference and restricted band allocation | D |
MFS-MAC [49] | 2014 | IEEE 802.15.6 | Hybrid | There is a need to define the authorities of the master node; moreover, this solution is not scalable | E |
PMAC [113] | 2014 | IEEE 802.15.4 | Hybrid | The applied security mechanism requires more time for sharing key and decryption, which can hinder the effectiveness of this protocol in terms of stringent QoS for WBASNs | P, S |
HEH-BMAC [114] | 2015 | IEEE 802.15.4 | Hybrid | Its suitability for critical medical applications is not discussed, whereas such applications require limited latency and high reliability | P, E |
RC-MAC [115] | 2015 | IEEE 802.15.4 | Hybrid | Receiver centric access mechanism demands resources in terms of power; moreover, the synchronisation among receiving nodes to avoid collision exploits the duty cycle mechanism | T |
PA-MAC [116] | 2016 | IEEE 802.15.4 IEEE 802.15.6 | Hybrid | It requires hardware modification, which is a difficult task for existing standards | P, E, C |
AT-MAC [117] | 2016 | IEEE 802.15.4 | Hybrid | The proposed mechanism focuses on reliability for WBASN medical applications, whereas a trade-off discussion between reliability, delay and energy usage is missing | R |
CoR-MAC [118] | 2016 | IEEE 802.15.4, IEEE 802.15.6 | Hybrid | For the implementation of such a mechanism, strong synchronisation is required between reservation mechanisms, which require more processing power and memory | D |
C-MAC+ [110] | 2017 | IEEE 802.15.6 | Hybrid | A strong a-synchronisation mechanism is required to avoid collision by incorporating a duty cycle mechanism. An extensive modification is required to implement C-MAC in existing standards | D, E |
Interference mitigation model [119] | 2018 | IEEE 802.15.6 | CSMA/CA | Required more resources in terms of energy and memory due to queue management | M, T |
TCP-CSMA/CA [120] | 2019 | IEEE 802.15.4 | Slotted CSMA/CA | Implementation requires more energy consumption and could add more delays for not-prioritised traffic | P, D |
TA-MAC [121] | 2019 | IEEE 802.15.4 | Hybrid | The proposed traffic-based priority mechanism works well; however, inclined average delay values for the other traffic types are noticed | P |
DCSS [122] | 2019 | IEEE 802.15.6 | Hybrid | The proposed dynamic channel selection mechanism selects a good channel to avoid interference; however, for that, it needs information from the physical layer, which will require more time and resources | I, T |
PBDT [123] | 2019 | IEEE 802.15.6 | Hybrid | Posture-based data transmission helps to identify the posture based on RSSI values; however, the proposed mechanism is complex and maybe not be suitable for sensors with delay-sensitive data | I, M |
Protocols | Comparison Parameters | |
---|---|---|
QoS Focus | Methodology | |
QPRR [56] | Reliability |
|
QPRD [132] | Delay |
|
DMQoS [133] | Delay, reliability, priority traffic |
|
LOCALMOR [134] | Latency, energy reliability, priority traffic, residual |
|
RL-QRP [135] | Packet delivery, delay, congestion |
|
EN-NEAT [136] | Energy, packet delivery |
|
Temperature-aware routing [137] | Energy, packet delivery, Delay |
|
TARA [138] | Energy, priority and throughput |
|
Protocols | Comparison Parameters |
---|---|
Methodology | |
WASP [139] |
|
CICADA [140] CICADA-S |
|
TICOSS [141] |
|
BIOCOMM [142] BIOCOMM-D |
|
Tree-based energy-efficient routing [143] |
|
Optimising transmission reliability, energy efficiency, and lifetime in body sensor networks [144] |
|
Thermal-aware routing protocol [145] |
|
Protocols | Comparison Parameters |
---|---|
Methods | |
AnyBody [146] |
|
LEACH [147] |
|
HIT [148] |
|
LEACH-M [105] |
|
LEACH-EE [109] |
|
AZM-LEACH [110] |
|
LEACH-GA [107] |
|
LEACH-IACA [149] |
|
EB-MADM [150] |
|
BAN-Trust [151] |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, M.S.; Hussain, Z.; Sheng, M.; Shankaran, R. Wireless Body Area Sensor Networks: Survey of MAC and Routing Protocols for Patient Monitoring under IEEE 802.15.4 and IEEE 802.15.6. Sensors 2022, 22, 8279. https://doi.org/10.3390/s22218279
Akbar MS, Hussain Z, Sheng M, Shankaran R. Wireless Body Area Sensor Networks: Survey of MAC and Routing Protocols for Patient Monitoring under IEEE 802.15.4 and IEEE 802.15.6. Sensors. 2022; 22(21):8279. https://doi.org/10.3390/s22218279
Chicago/Turabian StyleAkbar, Muhammad Sajjad, Zawar Hussain, Michael Sheng, and Rajan Shankaran. 2022. "Wireless Body Area Sensor Networks: Survey of MAC and Routing Protocols for Patient Monitoring under IEEE 802.15.4 and IEEE 802.15.6" Sensors 22, no. 21: 8279. https://doi.org/10.3390/s22218279
APA StyleAkbar, M. S., Hussain, Z., Sheng, M., & Shankaran, R. (2022). Wireless Body Area Sensor Networks: Survey of MAC and Routing Protocols for Patient Monitoring under IEEE 802.15.4 and IEEE 802.15.6. Sensors, 22(21), 8279. https://doi.org/10.3390/s22218279