Cloud Servers: Resource Optimization Using Different Energy Saving Techniques
Abstract
:1. Introduction
- To investigate how resource optimization can be performed in gaming data centers
- Utilizing real-time gaming workload
- To measure service quality during online gaming data by utilizing its two features, i.e., energy consumption and SLA (Service Level Agreement)
- To test and implement DVFS (Dynamic Voltage and Frequency Scaling), non-power aware, and static threshold virtual machine consolidation techniques for improving service quality.
2. Literature Review
3. Challenges
3.1. Migration of a Single Virtual Machine
3.2. Migration of a Dynamic Virtual Machine
4. System Methodology
- The global manager represents a master node to gather information from all local managers to preserve the total layout of the consumption of related resources, as shown in point 2 of Figure 3.
- The global manager provided instructions for the optimization of virtual machine positioning, as shown in point 3 of Figure 3.
- The main function of VMMs is to resize and migrate the virtual machines and shift the power modes of the nodes, as presented in point 5 of Figure 3.
5. Performance Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huber, N.; von Quast, M.; Hauck, M.; Kounev, S. Evaluating and Modeling Virtualization Performance Overhead for Cloud Environments. CLOSER 2011, 11, 563–573. [Google Scholar]
- Khan, F.; Ahmad, S.; Gürüler, H.; Cetin, G.; Whangbo, T.; Kim, C.-G. An Efficient and Reliable Algorithm for Wireless Sensor Network. Sensors 2021, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Khan, A.W.; Shah, K.; Qasim, I.; Habib, A. An Algorithmic Approach for Core Election in Mobile Ad-hoc Network. J. Internet Technol. 2019, 20, 4. [Google Scholar]
- Wang, L.; Tao, J.; Kunze, M.; Castellanos, A.C.; Kramer, D.; Karl, W. Scientific Cloud Computing: Early Definition and Experience. In Proceedings of the 2008 10th IEEE International Conference on High Performance Computing and Communications, Dalian, China, 25–27 September 2008; pp. 825–830. [Google Scholar] [CrossRef]
- Cheng, L.; Tachmazidis, I.; Kotoulas, S.; Antoniou, G. Design and evaluation of small–large outer joins in cloud computing environments. J. Parallel Distrib. Comput. 2017, 110, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Guo, S.; Li, J.; Zeng, D. Big Data Meet Green Challenges: Greening Big Data. IEEE Syst. J. 2016, 10, 873–887. [Google Scholar] [CrossRef]
- Khan, F.; Gul, T.; Ali, S.; Rashid, A.; Shah, D.; Khan, S. Energy aware cluster-head selection for improving network life time in wireless sensor network. Sci. Inf. Conf. 2018, 857, 581–593. [Google Scholar]
- Osman, S.; Subhraveti, D.; Su, G.; Nieh, J. The design and implementation of Zap: A system for migrating computing environments. ACM SIGOPS Oper. Syst. Rev. 2002, 36, 361–376. [Google Scholar] [CrossRef]
- Dillon, T.; Wu, C.; Chang, E. Cloud Computing: Issues and Challenges. In Proceedings of the 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, Australia, 20–23 April 2010; pp. 27–33. [Google Scholar] [CrossRef]
- Bianchini, R.; Rajamony, R. Power and energy management for server systems. Computer 2004, 37, 68–76. [Google Scholar] [CrossRef]
- Jiang, J.W.; Lan, T.; Ha, S.; Chen, M.; Chiang, M. Joint VM placement and routing for data center traffic engineering. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2876–2880. [Google Scholar] [CrossRef] [Green Version]
- Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25, 599–616. [Google Scholar] [CrossRef]
- Khan, F.; Tarimer, I.; Taekeun, W. Factor Model for Online Education during the COVID-19 Pandemic Using the IoT. Processes 2022, 10, 7. [Google Scholar] [CrossRef]
- Khan, F.; Zahid, M.; Gürüler, H.; Tarımer, İ.; Whangbo, T. An Efficient and Reliable Multicasting for Smart Cities. Mathematics 2022, 10, 3686. [Google Scholar] [CrossRef]
- In the data center, power and cooling costs more than the it equipment it supports. Electron. Cool. 2007, 13, 24. Available online: https://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/ (accessed on 31 May 2022).
- Khan, F.; Khan, A.W.; Khan, S.; Qasim, I.; Habib, A. A secure core-assisted multicast routing protocol in mobile ad-hoc network. J. Internet Technol. 2020, 21, 375–383. [Google Scholar]
- Fan, X.; Weber, W.-D.; Barroso, L.A. Power provisioning for a warehouse-sized computer. ACM SIGARCH Comput. Archit. News 2007, 35, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Barham, P. Xen and the Art of Virtualization. In Proceedings of the 19th ACM Symposi-um on Operating Systems Principles, Bolton Landing, NY, USA, 19–22 October 2003; ACM Press: New York, NY, USA, 2003. [Google Scholar]
- Ahmad, S.; Mehmood, F.; Khan, F.; Whangbo, T.K. Architecting Intelligent Smart Serious Games for Healthcare Applications: A Technical Perspective. Sensors 2022, 22, 810. [Google Scholar] [CrossRef]
- Amiri, M.; Osman, H.A.; Shirmohammadi, S. Resource optimization through hierarchical SDN-enabled inter data center network for cloud gaming. In Proceedings of the 11th ACM Multimedia Systems Conference, New York, NY, USA, 27 May 2020; pp. 166–177. [Google Scholar] [CrossRef]
- Amiri, M.; Osman, H.A.; Shirmohammadi, S.; Abdallah, M. Toward Delay-Efficient Game-Aware Data Centers for Cloud Gaming. ACM Trans. Multimed. Comput. Commun. Appl. 2016, 12, 71. [Google Scholar] [CrossRef]
- Cai, W.; Shea, R.; Huang, C.Y.; Chen, K.T.; Liu, J.; Leung, V.C.M.; Hsu, C.H. A Survey on Cloud Gaming: Future of Computer Games. IEEE Access 2016, 4, 7605–7620. [Google Scholar] [CrossRef]
- Chen, Q.; Grosso, P.; van der Veldt, K.; de Laat, C.; Hofman, R.; Bal, H. Profiling Energy Consumption of VMs for Green Cloud Computing. In Proceedings of the 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, Sydney, Australia, 12–14 December 2011; pp. 768–775. [Google Scholar] [CrossRef]
- Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; de Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [Google Scholar] [CrossRef]
- Khan, F.; Abbas, S.; Khan, S. An efficient and reliable core-assisted multicast routing protocol in mobile Ad-Hoc network. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Nathuji, R.; Schwan, K. Virtualpower: Coordinated power management in virtualized enterprise systems. ACM SIGOPS Oper. Syst. Rev. 2007, 41, 265–278. [Google Scholar] [CrossRef]
- Kusic, D.; Kephart, J.O.; Hanson, J.E.; Kandasamy, N.; Jiang, G. Power and performance management of virtualized computing environments via lookahead control. Clust. Comput. 2009, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Srikantaiah, S.; Kansal, A.; Zhao, F. Energy aware consolidation for cloud computing. In Proceedings of the 2008 conference on Power Aware Computing and Systems, San Diego, CA, USA, 7 December 2008; p. 10. Available online: https://www.usenix.org/legacy/event/hotpower08/tech/full_papers/srikantaiah/srikantaiah_html/ (accessed on 20 October 2022).
- Cardosa, M.; Korupolu, M.R.; Singh, A. Shares and utilities based power consolidation in virtualized server environments. In Proceedings of the 2009 IFIP/IEEE International Symposium on Integrated Network Management, New York, NY, USA, 1–5 June 2009; pp. 327–334. [Google Scholar] [CrossRef]
- Verma, A.; Ahuja, P.; Neogi, A. pMapper: Power and Migration Cost Aware Application Placement in Virtualized Systems. In Middleware 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 243–264. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.; Harchol-Balter, M.; Das, R.; Lefurgy, C. Optimal power allocation in server farms. ACM Sigmetrics Perform. Eval. Rev. 2009, 37, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Jung, G.; Joshi, K.R.; Hiltunen, M.A.; Schlichting, R.D.; Pu, C. A Cost-Sensitive Adaptation Engine for Server Consolidation of Multitier Applications. In Middleware 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 163–183. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Young, D.; Watson, B.J.; Wangm, Z.; Rolia, J.; Singhal, S.; McKee, B.; Hyser, C.; Gmach, D.; Gardner, R.; et al. 1000 Islands: Integrated Capacity and Workload Management for the Next Generation Data Center. In Proceedings of the 2008 International Conference on Autonomic Computing, Chicago, IL, USA, 2–6 June 2008; pp. 172–181. [Google Scholar] [CrossRef]
- Kumar, S.; Talwar, V.; Kumar, V.; Ranganathan, P.; Schwan, K. vManage: Loosely coupled platform and virtualization management in data centers. In Proceedings of the 6th International Conference on Autonomic Computing, New York, NY, USA, 15–19 June 2009; pp. 127–136. [Google Scholar] [CrossRef]
- Berral, J.L.; Goiri, I.; Nou, R.; Ferran, J.; Guitart, J.; Gavalda, R.; Torres, J. Towards energy-aware scheduling in data centers using machine learning. In Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, New York, NY, USA, 14–15 October 2010; pp. 215–224. [Google Scholar] [CrossRef] [Green Version]
- Arshad, U.; Aleem, M.; Srivastava, G.; Lin, J.C.-W. Utilizing power consumption and SLA violations using dynamic VM consolidation in cloud data centers. Renew. Sustain. Energy Rev. 2022, 167, 112782. [Google Scholar] [CrossRef]
- Moura, B.M.P.; Schneider, G.B.; Yamin, A.C.; Santos, H.; Reiser, R.H.S.; Bedregal, B. Interval-valued Fuzzy Logic approach for overloaded hosts in consolidation of virtual machines in cloud computing. Fuzzy Sets Syst. 2022, 446, 144–166. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Chen, L.; Zhang, L. Energy-aware virtual machine consolidation based on evolutionary game theory. Concurr. Comput. Pract. Exp. 2022, 34, e6830. [Google Scholar] [CrossRef]
- Gharehpasha, S.; Masdari, M.; Jafarian, A. Power efficient virtual machine placement in cloud data centers with a discrete and chaotic hybrid optimization algorithm. Clust. Comput. 2021, 24, 1293–1315. [Google Scholar] [CrossRef]
- Hussain, M.; Wei, L.-F.; Lakhan, A.; Wali, S.; Ali, S.; Hussain, A. Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sustain. Comput. Inform. Syst. 2021, 30, 100517. [Google Scholar] [CrossRef]
- Katal, A.; Dahiya, S.; Choudhury, T. Energy efficiency in cloud computing data center: A survey on hardware technologies. Clust. Comput. 2022, 25, 675–705. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Fu, X.; Yahyapour, R. A Survey on Virtual Machine Migration: Challenges, Techniques, and Open Issues. IEEE Commun. Surv. Tutor. 2018, 20, 1206–1243. [Google Scholar] [CrossRef]
- Duggan, M.; Duggan, J.; Howley, E.; Barrett, E. A network aware approach for the scheduling of virtual machine migration during peak loads. Clust. Comput. 2017, 20, 2083–2094. [Google Scholar] [CrossRef]
- Nathan, S.; Bellur, U.; Kulkarni, P. Towards a comprehensive performance model of virtual machine live migration. In Proceedings of the Sixth ACM Symposium on Cloud Computing, Kohala Coast, HI, USA, 27–29 August 2015; pp. 288–301. [Google Scholar]
- Bobroff, N.; Kochut, A.; Beaty, K. Dynamic placement of virtual machines for managing sla violations. In Proceedings of the 2007 10th IFIP/IEEE International Symposium on Integrated Network Management, Munich, Germany, 21–25 May 2007; pp. 119–128. [Google Scholar]
- Zhang, W.; Lam, K.T.; Wang, C.L. Adaptive live vm migration over a wan: Modeling and implementation. In Proceedings of the 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014; pp. 368–375. [Google Scholar]
- Bila, N.; de Lara, E.; Joshi, K.; Lagar-Cavilla, H.A.; Hiltunen, M.; Satyanarayanan, M. Jettison: Efficient idle desktop consolidation with partial VM migration. In Proceedings of the 7th ACM European Conference on Computer Systems, Bern, Switzerland, 10–13 April 2012; pp. 211–224. [Google Scholar]
- Liu, H.; He, B. Vmbuddies: Coordinating live migration of multi-tier applications in cloud environments. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 1192–1205. [Google Scholar] [CrossRef]
- Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exp. 2012, 24, 1397–1420. [Google Scholar] [CrossRef]
Method | Categories | Technique | Resolves |
---|---|---|---|
Data Centre Resource Management [26,27] | Local and Global Policies | Virtualization | Sequential optimization by addressing it through the concept of limited lookahead control |
Scheduling for multi-tier web applications [28] | Virtualizing heterogeneous systems | Virtualization | Decreases power consumption by maintaining performance for multi-web applications |
Power-aware dynamic placement of applications [30] | Dynamic Virtualization | Continuous Optimization | Power-aware dynamic placement of applications in interaction with a virtualized heterogeneous environment |
Dynamic virtual machine consolidation [34] | Dynamic VM consolidation based on estimation stability | Resource demands by utilizing the time-varying probability density function | Resolves resource optimization for small applications |
Dynamic Voltage and Frequency (DVFS)—Proposed | Single and Multi-server | DVFS, based on workload | Saves power and resolves resource optimization issues based on workload for servers placed locally and globally |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijji, M.; Ahmad, B.; Alam, G.; Alwakeel, A.; Alwakeel, M.; Abdulaziz Alharbi, L.; Aljarf, A.; Khan, M.U. Cloud Servers: Resource Optimization Using Different Energy Saving Techniques. Sensors 2022, 22, 8384. https://doi.org/10.3390/s22218384
Hijji M, Ahmad B, Alam G, Alwakeel A, Alwakeel M, Abdulaziz Alharbi L, Aljarf A, Khan MU. Cloud Servers: Resource Optimization Using Different Energy Saving Techniques. Sensors. 2022; 22(21):8384. https://doi.org/10.3390/s22218384
Chicago/Turabian StyleHijji, Mohammad, Bilal Ahmad, Gulzar Alam, Ahmed Alwakeel, Mohammed Alwakeel, Lubna Abdulaziz Alharbi, Ahd Aljarf, and Muhammad Umair Khan. 2022. "Cloud Servers: Resource Optimization Using Different Energy Saving Techniques" Sensors 22, no. 21: 8384. https://doi.org/10.3390/s22218384
APA StyleHijji, M., Ahmad, B., Alam, G., Alwakeel, A., Alwakeel, M., Abdulaziz Alharbi, L., Aljarf, A., & Khan, M. U. (2022). Cloud Servers: Resource Optimization Using Different Energy Saving Techniques. Sensors, 22(21), 8384. https://doi.org/10.3390/s22218384