Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement
Abstract
:1. Introduction
- The KLT optical flow method is adopted for tracking and matching, so the robustness and accuracy are poor for the environment, with weak texture and few key points.
- The Corner extraction algorithm adopts Harris corner. The algorithm adopts Gaussian filtering, which makes the corner extraction speed slow.
- Marginalization: Several types of residual information are put together for marginalization and optimization, which is costly.
2. Related Work
3. Proposed Method
3.1. FAST Corners and Harris Corners
3.2. Optical Flow and Inverse Optical Flow
3.3. Marginalization Acceleration
4. Experiments
4.1. Accuracy Comparison of the Algorithms in Public Dataset EuRoC
4.2. Comparison of the Algorithm’s Corner Extraction Speed in the Public Dataset EuRoC
4.3. The Algorithm Compares the Back-End Marginalization Speed in the Public Dataset EuRoC
4.4. Accuracy Comparison and Speed Comparison of Algorithms in Underwater HAUD-Dataset
5. Discussion and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, T.; Shen, S. Robust initialization of monocular visual-inertial estimation on aerial robots. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4225–4232. [Google Scholar]
- Li, P.; Qin, T.; Hu, B.; Zhu, F.; Shen, S. Monocular visual-inertial state estimation for mobile augmented reality. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nantes, France, 9–13 October 2017; pp. 11–21. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. Relocalißzation global optimization and map merging for monocular visual-inertial slam. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; pp. 1197–1204. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the The 4th Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar] [CrossRef]
- Yongyong, D.; Xinhua, H.; Yujie, Y.; Zongling, W. Image stabilization algorithm based on KLT motion tracking. In Proceedings of the 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, 10–12 July 2020; pp. 44–47. [Google Scholar] [CrossRef]
- Rosten, E.; Drummond, T. Machine Learning for High-Speed Corner Detection. In Computer Vision—ECCV 2006. ECCV 2006. Lecture Notes in Computer Science; Leonardis, A., Bischof, H., Pinz, A., Eds.; Springer: Berlin/Heidelberg, Germany; Volume 3951. [CrossRef]
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
- Song, Y.; Qian, J.; Miao, R.; Xue, W.; Ying, R.; Liu, P. HAUD: A High-Accuracy Underwater Dataset for Visual-Inertial Odometry. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Shan, Z.; Li, R.; Schwertfeger, S. RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots. Sensors 2019, 19, 2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Zheng, R.; Liu, M.; Zhang, S. Detecting Loop Closure using Enhanced Image for Underwater VINS-Mono. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- He, M.; Rajkumar, R.R. Extended VINS-Mono: A Systematic Approach for Absolute and Relative Vehicle Localization in Large-Scale Outdoor Environments. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4861–4868. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Lv, H.; Li, Y.; Yang, Z. Optimization of Corner Detection Algorithm for Video Stream Based on FAST. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; pp. 479–483. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, L.; Xu, G. A Novel Tracking Method Based on Improved FAST Corner Detection and Pyramid LK Optical Flow. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 1871–1876. [Google Scholar] [CrossRef]
- Mao, Y.M.; Lan, M.H.; Wang, Y.Q.; Feng, Q.S. An improved Harris based corner detection method. Comput. Technol. Dev. 2009, 19, 130–133. [Google Scholar]
- Zhao, M.; Wen, P.Z.; Deng, X. A parameter adaptive Harris corner detection algorithm. J. Guilin Univ. Electron. Sci. Technol. 2016, 36, 215–219. [Google Scholar]
- Han, S.; Yu, W.; Yang, H.; Wan, S. An Improved Corner Detection Algorithm Based on Harris. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 1575–1580. [Google Scholar] [CrossRef]
- Liu Z, B. Research on SLAM Based on Monocular Camera and IMU; Beijing University of Civil Engineering and Architecture: Beijing, China, 2019. [Google Scholar]
- He, M.; Rajkumar, R.R. Using Thermal Vision for Extended VINS-Mono to Localize Vehicles in Large-Scale Outdoor Road Environments. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 953–960. [Google Scholar] [CrossRef]
- Chen, L.J.; Henawy, J.; Kocer, B.B.; Seet, G.G.L. Aerial Robots on the Way to Underground: An Experimental Evaluation of VINS-Mono on Visual-Inertial Odometry Camera. In Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019; pp. 91–96. [Google Scholar] [CrossRef]
- Chen, T.D.; Jian, H.; Di, W. Dynamic target detection and tracking based on fast computation using sparse optical flow. China J. Image Graph. 2018, 18, 1593–1600. [Google Scholar]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the Imaging Understanding Workshop, Vancouver, BC, Canada, 24–28 August 1981; pp. 121–130. [Google Scholar]
- Wang, Z.; Yang, X.J. Moving target detection and tracking based on Pyramid Lucas-Kanade optical flow. In Proceedings of the 3rd IEEE International Conference on Image Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 66–69. [Google Scholar]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A Modern Synthesis. In Vision Algorithms: Theory and Practice. IWVA 1999. Lecture Notes in Computer Science; Triggs, B., Zisserman, A., Szeliski, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1883. [Google Scholar] [CrossRef]
Original VINS-Loop | Original VINS-Noloop | Improved VINS-Loop | Improved VINS-Noloop | |
---|---|---|---|---|
MH_01_easy | 0.18 | 0.27 | 0.18 | 0.25 |
MH_02_easy | 0.18 | 0.23 | 0.18 | 0.22 |
MH_03_medium | 0.40 | 0.43 | 0.40 | 0.42 |
MH_04_difficult | 0.39 | 0.50 | 0.38 | 0.41 |
MH_05_difficult | 0.38 | 0.41 | 0.38 | 0.41 |
V1_01_easy | 0.14 | 0.16 | 0.14 | 0.16 |
V1_02_medium | 0.31 | 0.32 | 0.30 | 0.31 |
V1_03_difficult | 0.31 | 0.31 | 0.31 | 0.31 |
V2_01_easy | 0.12 | 0.14 | 0.12 | 0.14 |
V2_02_medium | 0.27 | 0.27 | 0.27 | 0.27 |
V2_03_difficult | 0.32 | 0.43 | 0.32 | 0.48 |
VINS-Fusion | Improved VINS-MONO | |
---|---|---|
MH_01_easy | 0.15 | 0.11 |
MH_02_easy | 0.16 | 0.16 |
MH_03_medium | 0.39 | 0.35 |
MH_04_difficult | 0.37 | 0.34 |
MH_05_difficult | 0.32 | 0.32 |
V1_01_easy | 0.13 | 0.13 |
V1_02_medium | 0.28 | 0.26 |
V1_03_difficult | 0.31 | 0.31 |
V2_01_easy | 0.12 | 0.12 |
V2_02_medium | 0.27 | 0.22 |
V2_03_difficult | 0.32 | 0.32 |
Original VINS-Loop | Original VINS-Noloop | Improved VINS-Loop | Improved VINS-Noloop | |
---|---|---|---|---|
MH_01_easy | 0.19 | 0.15 | 0.19 | 0.15 |
MH_02_easy | 0.20 | 0.16 | 0.20 | 0.16 |
MH_03_medium | 0.42 | 0.36 | 0.42 | 0.36 |
MH_04_difficult | 0.40 | 0.34 | 0.40 | 0.34 |
MH_05_difficult | 0.39 | 0.32 | 0.38 | 0.32 |
V1_01_easy | 0.15 | 0.13 | 0.15 | 0.13 |
V1_02_medium | 0.30 | 0.30 | 0.30 | 0.30 |
V1_03_difficult | 0.23 | 0.22 | 0.23 | 0.22 |
V2_01_easy | 0.12 | 0.10 | 0.11 | 0.10 |
V2_02_medium | 0.24 | 0.23 | 0.24 | 0.23 |
V2_03_difficult | 0.25 | 0.25 | 0.25 | 0.25 |
Original VINS-Loop | Original VINS-Noloop | Improved VINS-Loop | Improved VINS-Noloop | |
---|---|---|---|---|
MH_01_easy | 0.09 | 0.07 | 0.09 | 0.07 |
MH_02_easy | 0.09 | 0.07 | 0.09 | 0.07 |
MH_03_medium | 0.13 | 0.11 | 0.13 | 0.11 |
MH_04_difficult | 0.10 | 0.08 | 0.10 | 0.08 |
MH_05_difficult | 0.10 | 0.08 | 0.10 | 0.08 |
V1_01_easy | 0.13 | 0.12 | 0.13 | 0.12 |
V1_02_medium | 0.24 | 0.24 | 0.24 | 0.24 |
V1_03_difficult | 0.24 | 0.23 | 0.24 | 0.23 |
V2_01_easy | 0.13 | 0.11 | 0.13 | 0.11 |
V2_02_medium | 0.21 | 0.20 | 0.21 | 0.20 |
V2_03_difficult | 0.21 | 0.21 | 0.21 | 0.21 |
Original VINS | Improved VINS | |
---|---|---|
MH_01_easy | 5.29 | 6.08 |
MH_02_easy | 7.60 | 5.18 |
MH_03_medium | 9.28 | 5.31 |
MH_04_difficult | 6.86 | 5.72 |
MH_05_difficult | 7.94 | 5.62 |
V1_01_easy | 3.19 | 5.79 |
V1_02_medium | 7.11 | 4.84 |
V1_03_difficult | 3.04 | 3.33 |
V2_01_easy | 3.64 | 6.28 |
V2_02_medium | 4.99 | 4.85 |
V2_03_difficult | 16.13 | 6.05 |
Original VINS | Improved VINS | |
---|---|---|
MH_01_easy | 16,533.17 | 10,500.04 |
MH_02_easy | 10,642.57 | 7370.98 |
MH_03_medium | 12,259.10 | 9193.03 |
MH_04_difficult | 6802.97 | 5700.21 |
MH_05_difficult | 8606.01 | 6153.79 |
V1_01_easy | 12,726.89 | 10,519.55 |
V1_02_medium | 5698.64 | 3893.45 |
V1_03_difficult | 5131.97 | 3342.73 |
V2_01_easy | 8735.87 | 7433.12 |
V2_02_medium | 7408.65 | 5503.44 |
V2_03_difficult | 4429.29 | 3129.24 |
Original VINS | Improved VINS | |
---|---|---|
sequence_03.bag | 0.5 | 0.41 |
sequence_05.bag | 3.9 | 3.1 |
sequence_06.bag | 1.5 | 1.5 |
sequence_07.bag | 5.8 | 5.8 |
Original VINS | Improved VINS | |
---|---|---|
sequence_03.bag | 9.34 | 7.71 |
sequence_05.bag | 11.25 | 8.12 |
sequence_06.bag | 8.72 | 8.39 |
sequence_07.bag | 13.36 | 14.52 |
Original VINS | Improved VINS | |
---|---|---|
sequence_03.bag | 15,806.17 | 9450.34 |
sequence_05.bag | 18,463.48 | 11,621.76 |
sequence_06.bag | 14,684.65 | 8563.45 |
sequence_07.bag | 9423.42 | 5169.47 |
VINS-Fusion | Improved VINS-MONO | |
---|---|---|
sequence_03.bag | 0.4 | 0.35 |
sequence_05.bag | 3.2 | 3.2 |
sequence_06.bag | 1.1 | 1.1 |
sequence_07.bag | 4.9 | 4.8 |
Original VINS-Noloop | Improved VINS-Noloop | The Percentage | |
---|---|---|---|
MH_01_easy | 0.27 | 0.25 | 2 |
MH_02_easy | 0.23 | 0.22 | 1 |
MH_03_medium | 0.43 | 0.42 | 1 |
MH_04_difficult | 0.50 | 0.41 | 9 |
MH_05_difficult | 0.41 | 0.41 | 0 |
V1_01_easy | 0.16 | 0.16 | 0 |
V1_02_medium | 0.32 | 0.31 | 1 |
V1_03_difficult | 0.31 | 0.31 | 0 |
V2_01_easy | 0.14 | 0.14 | 0 |
V2_02_medium | 0.27 | 0.27 | 0 |
V2_03_difficult | 0.43 | 0.48 | −5 |
Average value | \ | \ | 0.8 |
Original VINS-Loop | Improved VINS-Loop | The Percentage | |
---|---|---|---|
MH_01_easy | 0.18 | 0.18 | 0 |
MH_02_easy | 0.18 | 0.18 | 0 |
MH_03_medium | 0.40 | 0.40 | 0 |
MH_04_difficult | 0.39 | 0.38 | 1 |
MH_05_difficult | 0.38 | 0.38 | 0 |
V1_01_easy | 0.14 | 0.14 | 0 |
V1_02_medium | 0.31 | 0.30 | 1 |
V1_03_difficult | 0.31 | 0.31 | 0 |
V2_01_easy | 0.12 | 0.12 | 0 |
V2_02_medium | 0.27 | 0.27 | 0 |
V2_03_difficult | 0.32 | 0.32 | 0 |
Average value | \ | \ | 0.2 |
Original VINS | Improved VINS | Difference Value | |
---|---|---|---|
MH_01_easy | 5.29 | 6.08 | −0.79 |
MH_02_easy | 7.60 | 5.18 | 2.42 |
MH_03_medium | 9.28 | 5.31 | 3.97 |
MH_04_difficult | 6.86 | 5.72 | 1.14 |
MH_05_difficult | 7.94 | 5.62 | 2.32 |
V1_01_easy | 3.19 | 5.79 | −2.6 |
V1_02_medium | 7.11 | 4.84 | 2.27 |
V1_03_difficult | 3.04 | 3.33 | −0.29 |
V2_01_easy | 3.64 | 6.28 | −2.64 |
V2_02_medium | 4.99 | 4.85 | 0.14 |
V2_03_difficult | 16.13 | 6.05 | 10.08 |
Average value | \ | \ | 1.5 |
Original VINS | Improved VINS | Difference Value | |
---|---|---|---|
MH_01_easy | 16,533.17 | 10,500.04 | 6033 |
MH_02_easy | 10,642.57 | 7370.98 | 3272 |
MH_03_medium | 12,259.10 | 9193.03 | 3066 |
MH_04_difficult | 6802.97 | 5700.21 | 1102 |
MH_05_difficult | 8606.01 | 6153.79 | 2453 |
V1_01_easy | 12,726.89 | 10,519.55 | 2207 |
V1_02_medium | 5698.64 | 3893.45 | 1805 |
V1_03_difficult | 5131.97 | 3342.73 | 1789 |
V2_01_easy | 8735.87 | 7433.12 | 1302 |
V2_02_medium | 7408.65 | 5503.44 | 1905 |
V2_03_difficult | 4429.29 | 3129.24 | 1300 |
Average value | \ | \ | 2384 |
Original VINS | Improved VINS | The Percentage | |
---|---|---|---|
sequence_03.bag | 0.5 | 0.41 | 9 |
sequence_05.bag | 3.9 | 3.1 | 8 |
sequence_06.bag | 1.5 | 1.5 | 0 |
sequence_07.bag | 5.8 | 5.8 | 0 |
Average value | \ | \ | 4.2 |
Original VINS | Improved VINS | Difference Value | |
---|---|---|---|
sequence_03.bag | 9.34 | 7.71 | 1.63 |
sequence_05.bag | 11.25 | 8.12 | 3.13 |
sequence_06.bag | 8.72 | 8.39 | 0.33 |
sequence_07.bag | 13.36 | 14.52 | −1.16 |
Average value | \ | \ | 1.0 |
Original VINS | Improved VINS | Difference Value | |
---|---|---|---|
sequence_03.bag | 15,806.17 | 9450.34 | 6355 |
sequence_05.bag | 18,463.48 | 11,621.76 | 6841 |
sequence_06.bag | 14,684.65 | 8563.45 | 6121 |
sequence_07.bag | 9423.42 | 5169.47 | 4253 |
Average value | \ | \ | 5892 |
VINS-Fusion | Improved VINS-MONO | The Percentage | |
---|---|---|---|
MH_01_easy | 0.15 | 0.11 | 4 |
MH_02_easy | 0.16 | 0.16 | 0 |
MH_03_medium | 0.39 | 0.35 | 4 |
MH_04_difficult | 0.37 | 0.34 | 3 |
MH_05_difficult | 0.32 | 0.32 | 0 |
V1_01_easy | 0.13 | 0.13 | 0 |
V1_02_medium | 0.28 | 0.26 | 2 |
V1_03_difficult | 0.31 | 0.31 | 0 |
V2_01_easy | 0.12 | 0.12 | 0 |
V2_02_medium | 0.27 | 0.22 | 5 |
V2_03_difficult | 0.32 | 0.32 | 0 |
Average value | 1.6 |
VINS-Fusion | Improved VINS-MONO | The Percentage | |
---|---|---|---|
sequence_03.bag | 0.4 | 0.35 | 5 |
sequence_05.bag | 3.2 | 3.2 | 0 |
sequence_06.bag | 1.1 | 1.1 | 0 |
sequence_07.bag | 4.9 | 4.8 | 10 |
Average value | / | / | 3.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Gao, Y. Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement. Sensors 2022, 22, 8517. https://doi.org/10.3390/s22218517
Wu R, Gao Y. Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement. Sensors. 2022; 22(21):8517. https://doi.org/10.3390/s22218517
Chicago/Turabian StyleWu, Renhan, and Yuzhuo Gao. 2022. "Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement" Sensors 22, no. 21: 8517. https://doi.org/10.3390/s22218517
APA StyleWu, R., & Gao, Y. (2022). Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement. Sensors, 22(21), 8517. https://doi.org/10.3390/s22218517