Salinity and Temperature Dual-Parameter Sensor Based on Fiber Ring Laser with Tapered Side-Hole Fiber Embedded in Sagnac Interferometer
Abstract
:1. Introduction
2. Sensing Principle and Fabrication
2.1. Sensing Principle of the Sensor
2.2. Fabrication of the Structure
3. Experimental Results and Discussion
3.1. Experimental System
3.2. Salinity Response Based on BBS
3.3. Salinity Response Based on Fiber Ring Laser
3.4. Temperature Response Based on Fiber Ring Laser
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, L.; Yu, Y.; Xiao, M.; Yang, J.; Meng, Z. Temperature and Salinity Sensing Experiment Based on Microfiber Coupler Combined SAGNAC Loop. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019. [Google Scholar]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wang, J.; Li, F. A High Spatial Resolution FBG Sensor Array for Measuring Ocean Temperature and Depth. Photonic Sens. 2019, 10, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Frazão, O.; Pereira, D.A.; Santos, J.L.; Dias, I.; Dias, J.M.; Vaz, N.; Teixeira, M.; Quintela, A.; Ferreira, J.; Ferreira, L.A.; et al. Industrialization of advanced optical technologies for environmental monitoring. Clean Technol. Environ. Policy 2009, 12, 65–73. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Vasiliev, M.; Alameh, K. Three-Wave Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Temperature and Water Salinity of Seawater. IEEE Photonics Technol. Lett. 2011, 23, 450–452. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Liao, Y.; Yang, L.; Wang, S. Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater. Opt. Express 2019, 27, 23905–23918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-n.; Li, L.; Zhao, J.; Zhao, Y. Highly sensitive salinity sensor based on Mach-Zehnder interferometer with double-C fiber. Fundam. Res. 2022, 2, 296–302. [Google Scholar] [CrossRef]
- Zhao, F.; Xiao, D.; Lin, W.; Chen, Y.; Wang, G.; Hu, J.; Liu, S.; Yu, F.; Xu, W.; Yang, X.; et al. Sensitivity Enhanced Refractive Index Sensor With In-Line Fiber Mach-Zehnder Interferometer Based on Double-Peanut and Er-Doped Fiber Taper Structure. J. Lightwave Technol. 2022, 40, 245–251. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, S.; Shi, D.; Wu, Y.; Cao, Z.; Liu, Z. Simultaneous measurement of salinity and temperature using a Sagnac interferometer based on concatenated polarization-maintaining fiber tapers. Appl. Optics 2021, 60, 8904–8909. [Google Scholar] [CrossRef]
- Pereira, D.A. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature. Opt. Eng. 2004, 43, 299–304. [Google Scholar] [CrossRef]
- Luo, D.; Ma, J.; Ibrahim, Z.; Ismail, Z. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature. Opt. Commun. 2017, 392, 218–222. [Google Scholar] [CrossRef]
- Sun, M.-Y.; Jiang, H.-T.; Shi, B.; Zhou, G.-Y.; Inyang, H.I.; Feng, C.-X. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer. Measurement 2019, 140, 526–537. [Google Scholar] [CrossRef]
- Men, L.; Lu, P.; Chen, Q. A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement. J. Appl. Phys. 2008, 103, 053107. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.-N.; Liu, Y.; Li, C.; Lian, Z.; Lv, R.; Zhao, Y. Lateral offset optical fiber modal interferometer sensor for simultaneous measurement of seawater temperature and salinity. Opt. Fiber Technol. 2021, 67, 102737. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Cai, L. Hybrid Fiber-Optic Sensor for Seawater Temperature and Salinity Simultaneous Measurements. J. Lightwave Technol. 2022, 40, 880–886. [Google Scholar] [CrossRef]
- Wang, S.; Liu, T.; Wang, X.; Liao, Y.; Wang, J.; Wen, J. Hybrid structure Mach-Zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater. Measurement 2019, 135, 527–536. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Wang, X.-X.; Peng, Y.; Hu, X.-G. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements. Sens. Actuators B Chem. 2022, 353, 131134. [Google Scholar] [CrossRef]
- Budinski, V.; Donlagic, D. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review. Sensors 2017, 17, 443. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.; Hu, L.; Lu, A.; Lu, W.; Zhu, J.; Xu, H. Temperature Sensor Employed TCF-PMF Fiber Structure-Based Sagnac Interferometer. IEEE Photonics Technol. Lett. 2017, 29, 1364–1366. [Google Scholar] [CrossRef]
- Ge, Q.; Zhu, J.; Cui, Y.; Zhang, G.; Wu, X.; Li, S.; Wang, H.; Yu, B. Fiber optic temperature sensor utilizing thin PMF based Sagnac loop. Opt. Commun. 2022, 502, 127417. [Google Scholar] [CrossRef]
- Sun, L.P.; Yuan, Z.; Huang, T.; Sun, Z.; Lin, W.; Huang, Y.; Xiao, P.; Yang, M.; Li, J.; Guan, B.O. Ultrasensitive sensing in air based on Sagnac interferometer working at group birefringence turning point. Opt. Express 2019, 27, 29501–29509. [Google Scholar] [CrossRef]
- Sun, L.-P.; Li, J.; Jin, L.; Ran, Y.; Guan, B.-O. High-birefringence microfiber Sagnac interferometer based humidity sensor. Sens. Actuator A-Phys. 2016, 231, 696–700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yue, Y.; Hu, J. Highly Sensitive Temperature Sensor Based on Multicore Fiber-Polarization Maintaining Fiber Loop Mirror. IEEE Sens. J. 2020, 20, 1315–1321. [Google Scholar] [CrossRef]
- Lin, W.; Shao, L.-Y.; Vai, M.I.; Shum, P.P.; Liu, S.; Liu, Y.; Zhao, F.; Xiao, D.; Liu, Y.; Tan, Y.; et al. In-Fiber Mach–Zehnder Interferometer Sensor Based on Er Doped Fiber Peanut Structure in Fiber Ring Laser. J. Lightwave Technol. 2021, 39, 3350–3357. [Google Scholar] [CrossRef]
- Liang, H.; Wang, J.; Zhang, L.; Liu, J.; Wang, S. Review of Optical Fiber Sensors for Temperature, Salinity, and Pressure Sensing and Measurement in Seawater. Sensors 2022, 22, 5363. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, Y.; Wu, Q.-L.; Yang, Y. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B Chem. 2018, 260, 86–105. [Google Scholar] [CrossRef]
- Lin, W.; Sun, S.; Hu, J.; Zhao, F.; Shao, L. Research and application of sensing technology based on fiber ring laser. Semicond. Optoelectron. 2022, 43, 10. [Google Scholar]
- Bai, X.; Fan, D.; Wang, S.; Pu, S.; Zeng, X. Strain Sensor Based on Fiber Ring Cavity Laser With Photonic Crystal Fiber In-Line Mach–Zehnder Interferometer. IEEE Photonics J. 2014, 6, 1–8. [Google Scholar]
- Wang, L.; Wang, Y.J.; Song, S.; Li, F. Overview of Fibre Optic Sensing Technology in the Field of Physical Ocean Observation. Front. Phys. 2021, 9, 745487. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Yang, H.; Wang, X.; Wang, S. Salinity sensing based on microfiber knot resonator. Sens. Actuator A-Phys. 2015, 233, 22–25. [Google Scholar] [CrossRef]
- Yu, Y.; Bian, Q.; Lu, Y.; Zhang, X.; Yang, J.; Liang, L. High Sensitivity All Optical Fiber Conductivity-Temperature-Depth (CTD) Sensing Based on an Optical Microfiber Coupler (OMC). J. Lightwave Technol. 2019, 37, 2739–2747. [Google Scholar] [CrossRef]
- Akter, S.; Ahmed, K.; El-Naggar, S.A.; Taya, S.A.; Nguyen, T.K.; Dhasarathan, V. Highly Sensitive Refractive Index Sensor for Temperature and Salinity Measurement of Seawater. Optik 2020, 216, 164901. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Zheng, W.; Lu, Y.; E, S.; Zhang, Y.-N. Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (SPR). Instrum. Sci. Technol. 2020, 48, 601–615. [Google Scholar] [CrossRef]
- Selokar, T.; Giraldi, M.T.R. All-fiber sensors for salinity and temperature simultaneous measurement. Opt. Quantum Electron. 2021, 53, 23. [Google Scholar] [CrossRef]
Sample NO. | Waist Diameter (μm) | Taper Distance (cm) | Microscope Image |
---|---|---|---|
S1 | 7.90 | 2.4 | |
S2 | 11.63 | 2.2 | |
S3 | 18.21 | 1.6 |
Sample | Light Source | Salinity Sensitivity (nm/‰) | Salinity Range (‰) | Temperature Sensitivity (nm/°C) | Temperature Range (°C) |
---|---|---|---|---|---|
S1 | FRL | 0.2310 | 0–25 | 0.3041 | 20–30 |
0.2867 | 25–40 | ||||
BBS | 0.2177 | 0–40 | |||
S2 | FRL | 0.1716 | 0–20 | 0.2454 | 20–30 |
0.2142 | 25–40 | ||||
S3 | FRL | 0.0698 | 0–40 | 0.1304 | 20–28 |
Structures | Salinity Sensitivity (nm/‰) | Temperature Sensitivity (nm/°C) | Ref. |
---|---|---|---|
Microfiber knot resonator (2015) | 0.0022 | / | [30] |
Polyimide layer on etched fiber grating (2017) | 0.025 | 0.043 | [11] |
Optical Microfiber Coupler (2019) | 0.1596 | 2.326 | [31] |
Dual-core PCF (2020) | 0.2000 | 1.000 | [32] |
SPR (2020) | 0.31 | 2.02 | [33] |
Balloon-shaped and core diameter mismatch (2021) | 0.0168 | 0.7356 | [34] |
Sagnac interferometer concatenated PMF tapers (2021) | 0.0367 | 0.728 | [9] |
Lateral offset connected with UV-coated photonic crystal fiber (2021) | 2.495 | 1.48 | [16] |
FPI and MZ cascaded (2022) | 0.244 | 2.767 | [17] |
This work | 0.2867 | 0.3041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Lin, W.; Hu, J.; Liu, S.; Yu, F.; Chen, X.; Wang, G.; Shum, P.P.; Shao, L. Salinity and Temperature Dual-Parameter Sensor Based on Fiber Ring Laser with Tapered Side-Hole Fiber Embedded in Sagnac Interferometer. Sensors 2022, 22, 8533. https://doi.org/10.3390/s22218533
Zhao F, Lin W, Hu J, Liu S, Yu F, Chen X, Wang G, Shum PP, Shao L. Salinity and Temperature Dual-Parameter Sensor Based on Fiber Ring Laser with Tapered Side-Hole Fiber Embedded in Sagnac Interferometer. Sensors. 2022; 22(21):8533. https://doi.org/10.3390/s22218533
Chicago/Turabian StyleZhao, Fang, Weihao Lin, Jie Hu, Shuaiqi Liu, Feihong Yu, Xingwei Chen, Guoqing Wang, Perry Ping Shum, and Liyang Shao. 2022. "Salinity and Temperature Dual-Parameter Sensor Based on Fiber Ring Laser with Tapered Side-Hole Fiber Embedded in Sagnac Interferometer" Sensors 22, no. 21: 8533. https://doi.org/10.3390/s22218533
APA StyleZhao, F., Lin, W., Hu, J., Liu, S., Yu, F., Chen, X., Wang, G., Shum, P. P., & Shao, L. (2022). Salinity and Temperature Dual-Parameter Sensor Based on Fiber Ring Laser with Tapered Side-Hole Fiber Embedded in Sagnac Interferometer. Sensors, 22(21), 8533. https://doi.org/10.3390/s22218533