From Sensor Data to Educational Insights
1. The Affordances and Caveats of Sensor Data in Education
2. Overview of the Special Issue
3. Conclusions and Future of Sensor-Based Technologies in Education
References
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomez, M.J.; Ruipérez-Valiente, J.A.; García Clemente, F.J. Analyzing Trends and Patterns Across the Educational Technology Communities Using Fontana Framework. IEEE Access 2022, 10, 35336–35351. [Google Scholar] [CrossRef]
- Kitto, K.; Buckingham Shum, S.; Gibson, A. Embracing imperfection in learning analytics. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge, Wales, SNS, Australia, 7–9 March 2018; pp. 451–460. [Google Scholar]
- Ochoa, X. Multimodal Learning Analytics-Rationale, Process, Examples, and Direction. In The Handbook of Learning Analytics, 2nd ed.; Lang, C., Siemens, G., Wise, A.F., Gasevic, D., Merceron, A., Eds.; SoLAR: Vancouver, BC, Canada, 2022; Section 6; pp. 54–65. [Google Scholar]
- Järvelä, S.; Gašević, D.; Seppänen, T.; Pechenizkiy, M.; Kirschner, P.A. Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning. Br. J. Educ. Technol. 2020, 51, 2391–2406. [Google Scholar] [CrossRef]
- Echeverria, V.; Martinez-Maldonado, R.; Power, T.; Hayes, C.; Shum, S.B. Where Is the Nurse? Towards Automatically Visualising Meaningful Team Movement in Healthcare Education. In Proceedings of the Artificial Intelligence in Education, London, UK, 27–30 June 2018; Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 74–78. [Google Scholar]
- Di Mitri, D.; Schneider, J.; Specht, M.; Drachsler, H. From signals to knowledge: A conceptual model for multimodal learning analytics. J. Comput. Assist. Learn. 2018, 34, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Muhammad, K.; Hussain, T.; Nasir, M.; Munsif, M.; Imran, A.S.; Sajjad, M. An Adaptive Game-Based Learning Strategy for Children Road Safety Education and Practice in Virtual Space. Sensors 2021, 21, 3661. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Osuna, H.A.; Luque-Vega, L.F.; Carlos-Mancilla, M.A.; Ornelas-Vargas, G.; Castañeda-Miranda, V.H.; Carrasco-Navarro, R. Implementation of a MEIoT Weather Station with Exogenous Disturbance Input. Sensors 2021, 21, 1653. [Google Scholar] [CrossRef]
- Castañeda-Miranda, V.H.; Luque-Vega, L.F.; Lopez-Neri, E.; Nava-Pintor, J.A.; Guerrero-Osuna, H.A.; Ornelas-Vargas, G. Two-Dimensional Cartesian Coordinate System Educational Toolkit: 2D-CACSET. Sensors 2021, 21, 6304. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, L.; Gasevic, D.; Martinez-Maldonado, R. Scalability, Sustainability, and Ethicality of Multimodal Learning Analytics. In Proceedings of the LAK22: 12th International Learning Analytics and Knowledge Conference, Online, 21–25 March 2022; Association for Computing Machinery: New York, NY, USA, 2022. LAK22. pp. 13–23. [Google Scholar] [CrossRef]
- Worsley, M.; Martinez-Maldonado, R.; D’Angelo, C. A New Era in Multimodal Learning Analytics: Twelve Core Commitments to Ground and Grow MMLA. J. Learn. Anal. 2021, 8, 10–27. [Google Scholar] [CrossRef]
- Chng, E.; Seyam, M.R.; Yao, W.; Schneider, B. Toward capturing divergent collaboration in makerspaces using motion sensors. Inf. Learn. Sci. 2022, 123, 276–297. [Google Scholar] [CrossRef]
- Martinez-Maldonado, R.; Echeverria, V.; Fernandez Nieto, G.; Buckingham Shum, S. From data to insights: A layered storytelling approach for multimodal learning analytics. In Proceedings of the 2020 Chi Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–15. [Google Scholar]
- Dale, M.E.; Godley, A.J.; Capello, S.A.; Donnelly, P.J.; D’Mello, S.K.; Kelly, S.P. Toward the automated analysis of teacher talk in secondary ELA classrooms. Teach. Teach. Educ. 2022, 110, 103584. [Google Scholar] [CrossRef]
- Yan, L.; Martinez-Maldonado, R.; Zhao, L.; Deppeler, J.; Corrigan, D.; Gasevic, D. How Do Teachers Use Open Learning Spaces? Mapping from Teachers’ Socio-Spatial Data to Spatial Pedagogy. In Proceedings of the LAK22: 12th International Learning Analytics and Knowledge Conference, Online, 21–25 March 2022; pp. 87–97. [Google Scholar]
- Southwell, R.; Pugh, S.; Perkoff, E.M.; Clevenger, C.; Bush, J.B.; Lieber, R.; Ward, W.; Foltz, P.; D’Mello, S. Challenges and Feasibility of Automatic Speech Recognition for Modeling Student Collaborative Discourse in Classrooms. In Proceedings of the 15th International Conference on Educational Data Mining, Durham, UK, 24–27 July 2022; Volume 27, pp. 302–315. [Google Scholar]
- Di Mitri, D.; Schneider, J.; Drachsler, H. Keep Me in the Loop: Real-Time Feedback with Multimodal Data. Int. J. Artif. Intell. Educ. 2021, 32, 1–26. [Google Scholar] [CrossRef]
- Schneider, J.; Börner, D.; Van Rosmalen, P.; Specht, M. Presentation Trainer: What experts and computers can tell about your nonverbal communication. J. Comput. Assist. Learn. 2017, 33, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Mangaroska, K.; Sharma, K.; Gašević, D.; Giannakos, M. Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. J. Comput. Assist. Learn. 2022, 38, 40–59. [Google Scholar] [CrossRef]
- Alwahaby, H.; Cukurova, M.; Papamitsiou, Z.; Giannakos, M. The Evidence of Impact and Ethical Considerations of Multimodal Learning Analytics: A Systematic Literature Review. In The Multimodal Learning Analytics Handbook; Giannakos, M., Spikol, D., Di Mitri, D., Sharma, K., Ochoa, X., Hammad, R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 289–325. [Google Scholar] [CrossRef]
- Donnelly, P.J.; Blanchard, N.; Samei, B.; Olney, A.M.; Sun, X.; Ward, B.; Kelly, S.; Nystrand, M.; D’Mello, S.K. Multi-Sensor Modeling of Teacher Instructional Segments in Live Classrooms. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; Association for Computing Machinery: New York, NY, USA, 2016. ICMI ’16. pp. 177–184. [Google Scholar] [CrossRef]
- Mangaroska, K.; Martinez-Maldonado, R.; Vesin, B.; Gašević, D. Challenges and opportunities of multimodal data in human learning: The computer science students’ perspective. J. Comput. Assist. Learn. 2021, 37, 1030–1047. [Google Scholar] [CrossRef]
- Beardsley, M.; Martinez Moreno, J.; Vujovic, M.; Santos, P.; Hernández-Leo, D. Enhancing consent forms to support participant decision making in multimodal learning data research. Br. J. Educ. Technol. 2020, 51, 1631–1652. [Google Scholar] [CrossRef]
- Mat Sanusi, K.A.; Mitri, D.D.; Limbu, B.; Klemke, R. Table Tennis Tutor: Forehand Strokes Classification Based on Multimodal Data and Neural Networks. Sensors 2021, 21, 3121. [Google Scholar] [CrossRef]
- Ciordas-Hertel, G.P.; Rödling, S.; Schneider, J.; Di Mitri, D.; Weidlich, J.; Drachsler, H. Mobile Sensing with Smart Wearables of the Physical Context of Distance Learning Students to Consider Its Effects on Learning. Sensors 2021, 21, 6649. [Google Scholar] [CrossRef] [PubMed]
- Praharaj, S.; Scheffel, M.; Schmitz, M.; Specht, M.; Drachsler, H. Towards Automatic Collaboration Analytics for Group Speech Data Using Learning Analytics. Sensors 2021, 21, 3156. [Google Scholar] [CrossRef]
- Lee, H.H.; Chen, Z.L.; Yeh, S.L.; Hsiao, J.H.; Wu, A.Y.A. When Eyes Wander Around: Mind-Wandering as Revealed by Eye Movement Analysis with Hidden Markov Models. Sensors 2021, 21, 7569. [Google Scholar] [CrossRef]
- Brückner, S.; Schneider, J.; Zlatkin-Troitschanskaia, O.; Drachsler, H. Epistemic Network Analyses of Economics Students’ Graph Understanding: An Eye-Tracking Study. Sensors 2020, 20, 6908. [Google Scholar] [CrossRef]
- Vujovic, M.; Amarasinghe, I.; Hernández-Leo, D. Studying Collaboration Dynamics in Physical Learning Spaces: Considering the Temporal Perspective through Epistemic Network Analysis. Sensors 2021, 21, 2898. [Google Scholar] [CrossRef]
- Solé-Beteta, X.; Navarro, J.; Gajšek, B.; Guadagni, A.; Zaballos, A. A Data-Driven Approach to Quantify and Measure Students’ Engagement in Synchronous Virtual Learning Environments. Sensors 2022, 22, 3294. [Google Scholar] [CrossRef]
- Chejara, P.; Prieto, L.P.; Ruiz-Calleja, A.; Rodríguez-Triana, M.J.; Shankar, S.K.; Kasepalu, R. EFAR-MMLA: An Evaluation Framework to Assess and Report Generalizability of Machine Learning Models in MMLA. Sensors 2021, 21, 2863. [Google Scholar] [CrossRef] [PubMed]
- Horvers, A.; Tombeng, N.; Bosse, T.; Lazonder, A.W.; Molenaar, I. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review. Sensors 2021, 21, 7869. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo-González, M.; Ruipérez-Valiente, J.A.; Gómez Mármol, F. Evaluating different configurations of machine learning models and their transfer learning capabilities for stress detection using heart rate. J. Ambient. Intell. Humaniz. Comput. 2022. [Google Scholar] [CrossRef]
- Di Mitri, D. Restoring Context in Online Teaching with Artificial Intelligence and Multimodal Learning Experiences. In Proceedings of the SITE Interactive Conference, Association for the Advancement of Computing in Education (AACE), Online, 28 February 2021; pp. 494–501. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruipérez-Valiente, J.A.; Martínez-Maldonado, R.; Di Mitri, D.; Schneider, J. From Sensor Data to Educational Insights. Sensors 2022, 22, 8556. https://doi.org/10.3390/s22218556
Ruipérez-Valiente JA, Martínez-Maldonado R, Di Mitri D, Schneider J. From Sensor Data to Educational Insights. Sensors. 2022; 22(21):8556. https://doi.org/10.3390/s22218556
Chicago/Turabian StyleRuipérez-Valiente, José A., Roberto Martínez-Maldonado, Daniele Di Mitri, and Jan Schneider. 2022. "From Sensor Data to Educational Insights" Sensors 22, no. 21: 8556. https://doi.org/10.3390/s22218556
APA StyleRuipérez-Valiente, J. A., Martínez-Maldonado, R., Di Mitri, D., & Schneider, J. (2022). From Sensor Data to Educational Insights. Sensors, 22(21), 8556. https://doi.org/10.3390/s22218556