Lower Limb Exoskeleton Sensors: State-of-the-Art
Abstract
:1. Introduction
1.1. Related Works
2. Requirements for Sensor Characteristics
3. Current Sensing Technologies
3.1. Kinematics Sensors
3.2. Kinetics Sensors
3.3. Muscle Activity Sensors
3.4. Brain Activity Sensors
3.5. Other Physiological Signal Sensors
4. Methodology
5. Results
6. Discussion
- Movement activity sensors and sensors measuring the state of the musculoskeletal system,
- Sensors measuring physiological and other biomedical data,
- Sensors for measuring the physical characteristics of the state of the exoskeleton and the environment.
6.1. Movement Activity Sensors and Sensors Measuring the State of the Musculoskeletal System
6.2. Sensors Measuring Physiological and Other Biomedical Data
6.3. Sensors for Measuring the Physical Characteristics of the State of the Exoskeleton and the Environment
7. Conclusions
Funding
Conflicts of Interest
References
- Viteckova, S.; Kutilek, P.; Jirina, M. Wearable lower limb robotics: A review. Biocybern. Biomed. Eng. 2013, 33, 96–105. [Google Scholar] [CrossRef]
- Viteckova, S.; Kutilek, P.; de Boisboissel, G.; Krupicka, R.; Galajdova, A.; Kauler, J.; Lhotska, L.; Szabo, Z. Empowering lower limbs exoskeletons: State-of-the-art. Robotica 2018, 36, 1743–1756. [Google Scholar] [CrossRef]
- Lee, H.-D.; Han, C.-S. Technical Trend of the Lower Limb Exoskeleton System for the Performance Enhancement. J. Inst. Control Robot. Syst. 2014, 20, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Wu, J.; Zhou, Q. Developments and challenges in human performance enhancement technology. Med. Nov. Technol. Devices 2021, 12, 100095. [Google Scholar] [CrossRef]
- Yan, T.; Cempini, M.; Oddo, C.M.; Vitiello, N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 2015, 64, 120–136. [Google Scholar] [CrossRef]
- Veale, A.J.; Xie, S.Q. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies. Med. Eng. Phys. 2016, 38, 317–325. [Google Scholar] [CrossRef]
- Vidal, A.P.; Morales, J.R.; Torres, G.O.; Vázquez, F.S.; Rojas, A.C.; Mendoza, J.B.; Cerda, J.R. Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Del Sanchez-Villamañan, M.C.; Gonzalez-Vargas, J.; Torricelli, D.; Moreno, J.C.; Pons, J.L. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. J. Neuroeng. Rehabil. 2019, 16, 55. [Google Scholar] [CrossRef]
- Perez-Sala, X.; Escalera, S.; Angulo, C.; Gonzàlez, J. A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery. Sensors 2014, 14, 4189–4210. [Google Scholar] [CrossRef] [Green Version]
- Roriz, P.; Carvalho, L.; Frazão, O.; Santos, J.L.; Simões, J.A. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review. J. Biomech. 2014, 47, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Zhang, Z.-Q.; Lo, B.P.L.; Yang, G.-Z. Wearable Sensing for Solid Biomechanics. IEEE Sensors J. 2015, 15, 2747–2760. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.Y.; Wong, M.; Lo, K.H. Clinical applications of sensors for human posture and movement analysis: A review. Prosthetics Orthot. Int. 2007, 31, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Bonato, P. Advances in wearable technology and applications in physical medicine and rehabilitation. J. Neuroeng. Rehabil. 2005, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Bonato, P. Advances in Wearable Technology for Rehabilitation; IOS Press: Amsterdam, The Netherlands, 2009; Volume 145, pp. 145–159. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.; Ghazilla, R.A.R.; Khairi, N.M.; Kasi, V. Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications. Int. J. Signal Process. Syst. 2013, 1, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Rukina, N.; Kuznetsov, A.; Borzikov, V.; Komkova, O.; Belova, A. Surface Electromyography: Its Role and Potential in the Development of Exoskeleton (Review). Sovrem. Tehnol. Med. 2016, 8, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-J.; Zhang, J.-F.; Chen, Y.; Dong, Y.-M.; Zhang, Y. A Review of exoskeleton-type systems and their key technologies. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 1599–1612. [Google Scholar] [CrossRef]
- Lee, H.; Kim, W.; Han, J.; Han, C. The technical trend of the exoskeleton robot system for human power assistance. Int. J. Precis. Eng. Manuf. 2012, 13, 1491–1497. [Google Scholar] [CrossRef]
- Hong, Y.W.; King, Y.-J.; Yeo, W.-H.; Ting, C.-H.; Chuah, Y.-D.; Lee, J.-V. Lower Extremity Exoskeleton: Review and Challenges Surrounding the Technology and its Role in Rehabilitation of Lower Limbs. Aust. J. Basic Appl. Sci. 2013, 7, 520–524. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Xue, Q. Lower limb rehabilitation exoskeleton robot: A review. Adv. Mech. Eng. 2021, 13, 168781402110118. [Google Scholar] [CrossRef]
- de la Tejera, J.; Bustamante-Bello, R.; Ramirez-Mendoza, R.; Izquierdo-Reyes, J. Systematic Review of Exoskeletons towards a General Categorization Model Proposal. Appl. Sci. 2021, 11, 76. [Google Scholar] [CrossRef]
- Novak, D.; Riener, R. A survey of sensor fusion methods in wearable robotics. Robot. Auton. Syst. 2015, 73, 155–170. [Google Scholar] [CrossRef]
- Li, W.-Z.; Cao, G.-Z.; Zhu, A.-B. Review on Control Strategies for Lower Limb Rehabilitation Exoskeletons. IEEE Access 2021, 9, 123040–123060. [Google Scholar] [CrossRef]
- Tucker, M.R.; Olivier, L.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.; Millán, J.D.R.; Riener, R.; Vallery, H.; Gassert, R. Control strategies for active lower extremity prosthetics and orthotics: A review. J. Neuroeng. Rehabil. 2015, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.J.; Ferris, D.P. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, B.; Liu, C.; Liu, T.; Han, Y.; Wang, S.; Ferreira, J.P.; Dong, W.; Zhang, X. A Review on the Rehabilitation Exoskeletons for the Lower Limbs of the Elderly and the Disabled. Electronics 2022, 11, 388. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J. Mech. Eng. 2019, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baud, R.; Manzoori, A.R.; Ijspeert, A.; Bouri, M. Review of control strategies for lower-limb exoskeletons to assist gait. J. Neuroeng. Rehabil. 2021, 18, 119. [Google Scholar] [CrossRef]
- Hussain, F.; Goecke, R.; Mohammadian, M. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1375–1385. [Google Scholar] [CrossRef]
- Redkar, S.; Chinmilli, S.R.P.T.; Zhang, T.S.W. A Review on Wearable Inertial Tracking based Human Gait Analysis and Control Strategies of Lower-Limb Exoskeletons. Int. Robot. Autom. J. 2017, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Batavia, A.I.; Hammer, G.S. Toward the development of consumer-based criteria for the evaluation of assistive devices. J. Rehabil. Res. Dev. 1990, 27, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.J.; Lane, J.P. Assessing consumer profiles of ‘ideal’ assistive technologies in ten categories: An integration of quantitative and qualitative methods. Disabil. Rehabil. 1997, 19, 528–535. [Google Scholar] [CrossRef]
- Chen, G.; Qi, P.; Guo, Z.; Yu, H. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator. IEEE Trans. Biomed. Eng. 2017, 64, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Lebel, K.; Boissy, P.; Hamel, M.; Duval, C. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions—Effect of Velocity. PLoS ONE 2013, 8, e79945. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, D.P.N.; Pankaj, D.; Mahajan, A.; Kumar, A.; Sohi, B.S. Evaluation of normal Gait using electro-goniometer. J. Sci. Ind. Res. 2009, 68, 696–698. [Google Scholar]
- Nogueira, S.L.; Siqueira, A.A.G.; Inoue, R.S.; Terra, M.H. Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons. Sensors 2014, 14, 1835–1849. [Google Scholar] [CrossRef] [Green Version]
- Dollar, A.M.; Herr, H. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Maggioni, S.; Melendez-Calderon, A.; van Asseldonk, E.; Klamroth-Marganska, V.; Lünenburger, L.; Riener, R.; van der Kooij, H. Robot-aided assessment of lower extremity functions: A review. J. Neuroeng. Rehabil. 2016, 13, 72. [Google Scholar] [CrossRef] [Green Version]
- Luinge, H.; Veltink, P.; Baten, C. Estimating orientation with gyroscopes and accelerometers. Technol. Heal. Care 1999, 7, 455–459. [Google Scholar] [CrossRef]
- Willemsen, A.; van Alsté, J.; Boom, H. Real-time gait assessment utilizing a new way of accelerometry. J. Biomech. 1990, 23, 859–863. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.A.; Siegel, A.M.; Zogbi, G.; Opar, T.P. Warfighter Physiological and Environmental Monitoring: A Study for the U.S. Army Research Institute in Environmental Medicine and the Soldier Systems Center; Massachusetts Inst Of Tech Lexington Lincoln Lab: Lexington, MA, USA, 2004. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X.; Yin, G. Design on intelligent perception system for lower limb rehabilitation exoskeleton robot. In Proceedings of the 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xian, China, 19–22 August 2016; pp. 587–592. [Google Scholar] [CrossRef]
- Del-Ama, A.J.; Moreno, J.C.; Gil-Agudo, A.; de-los-Reyes, A.; Pons, J.L. Online Assessment of Human-Robot Interaction for Hybrid Control of Walking. Sensors 2012, 12, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.I.; Cheng, H.; Lin, X.; Omer, M.; Juma, M.A. Variable Admittance Control for Climbing Stairs in Human-Powered Exoskeleton Systems. Adv. Robot. Autom. 2016, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Kadone, H.; Suzuki, K.; Sankai, Y. Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control. Sensors 2014, 14, 1705–1722. [Google Scholar] [CrossRef] [Green Version]
- De Rossi, S.M.M.; Vitiello, N.; Lenzi, T.; Ronsse, R.; Koopman, B.; Persichetti, A.; Vecchi, F.; Ijspeert, A.J.; Van Der Kooij, H.; Carrozza, M.C. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface. Sensors 2011, 11, 207–227. [Google Scholar] [CrossRef]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.; Lyons, G.M. The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med Eng. Phys. 2003, 25, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, C.; Hommel, G. A Human--Exoskeleton Interface Utilizing Electromyography. IEEE Trans. Robot. 2008, 24, 872–882. [Google Scholar] [CrossRef]
- Gordon, K.E.; Ferris, D. Learning to walk with a robotic ankle exoskeleton. J. Biomech. 2007, 40, 2636–2644. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Sierra, H.; Yu, W.; Salazar, S.; Lopez-Gutierrez, J.R. Design and control of hybrid actuation lower limb exoskeleton. Adv. Mech. Eng. 2015, 7, 168781401559098. [Google Scholar] [CrossRef]
- Gordon, K.E.; Kinnaird, C.R.; Ferris, D.P. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. J. Neurophysiol. 2013, 109, 1804–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galle, S.; Malcolm, P.; Collins, S.H.; De Clercq, D. Reducing the metabolic cost of walking with an ankle exoskeleton: Interaction between actuation timing and power. J. Neuroeng. Rehabil. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Yu, C.-H.; Jeong, G.-Y.; Heo, M.; Kwon, T.-K. Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback. J. Mech. Sci. Technol. 2013, 27, 3161–3169. [Google Scholar] [CrossRef]
- Beck, T.W.; Housh, T.J.; Cramer, J.T.; Weir, J.P.; Johnson, G.O.; Coburn, J.W.; Malek, M.H.; Mielke, M. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: A comprehensive review. Biomed. Eng. Online 2005, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Sundaraj, K.; Ahmad, R.B.; Ahamed, N.U. Mechanomyogram for Muscle Function Assessment: A Review. PLoS ONE 2013, 8, e58902. [Google Scholar] [CrossRef] [PubMed]
- Meagher, C.; Franco, E.; Turk, R.; Wilson, S.; Steadman, N.; McNicholas, L.; Vaidyanathan, R.; Burridge, J.; Stokes, M. New advances in mechanomyography sensor technology and signal processing: Validity and intrarater reliability of recordings from muscle. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320916116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cram, J.R.; Kasman, G.S.; Holtz, J. Introduction to Surface Electromyography; Aspen Publishers: Gaithersburg, MD, USA, 1998; ISBN 9780834207516. [Google Scholar]
- Orizio, C. Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies. Crit. Rev. Biomed. Eng. 1993, 21, 201–243. [Google Scholar]
- Smith, T.; Stokes, M. Technical aspects of acoustic myography (AMG) of human skeletal muscle: Contact pressure and force/AMG relationships. J. Neurosci. Methods 1993, 47, 85–92. [Google Scholar] [CrossRef]
- Dobrunz, L.; Pelletier, D.; McMahon, T. Muscle stiffness measured under conditions simulating natural sound production. Biophys. J. 1990, 58, 557–565. [Google Scholar] [CrossRef]
- Alves, N.; Sejdić, E.; Sahota, B.; Chau, T. The effect of accelerometer location on the classification of single-site forearm mechanomyograms. Biomed. Eng. Online 2010, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Zuniga, J.M.; Housh, T.J.; Camic, C.L.; Hendrix, C.R.; Mielke, M.; Schmidt, R.J.; Johnson, G.O. The effects of accelerometer placement on mechanomyographic amplitude and mean power frequency during cycle ergometry. J. Electromyogr. Kinesiol. 2010, 20, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Deffieux, T.; Gennisson, J.-L.; Tanter, M.; Fink, M.; Nordez, A. Ultrafast imaging of in vivo muscle contraction using ultrasound. Appl. Phys. Lett. 2006, 89, 184107. [Google Scholar] [CrossRef]
- Vanello, N.; Hartwig, V.; Tesconi, M.; Ricciardi, E.; Tognetti, A.; Zupone, G.; Gassert, R.; Chapuis, D.; Sgambelluri, N.; Scilingo, E.P.; et al. Sensing Glove for Brain Studies: Design and Assessment of Its Compatibility for fMRI With a Robust Test. IEEE/ASME Trans. Mechatronics 2008, 13, 345–354. [Google Scholar] [CrossRef]
- Lukowicz, P.; Ward, J.A.; Junker, H.; Stäger, M.; Tröster, G.; Atrash, A.; Starner, T. Recognizing Workshop Activity Using Body Worn Microphones and Accelerometers. In Proceedings of the Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz/Vienna, Austria, 18–23 April 2004; Ferscha, A., Mattern, F., Eds.; Springer: Berlin, Germay, 2004; pp. 18–32. ISBN 978-3-540-21835-7. [Google Scholar]
- Moromugi, S.; Koujina, Y.; Ariki, S.; Okamoto, A.; Tanaka, T.; Feng, M.Q.; Ishimatsu, T. Muscle stiffness sensor to control an assistance device for the disabled. Artif. Life Robot. 2004, 8, 42–45. [Google Scholar] [CrossRef]
- Murayama, M.; Nosaka, K.; Yoneda, T.; Minamitani, K. Changes in hardness of the human elbow flexor muscles after eccentric exercise. Eur. J. Appl. Physiol. 2000, 82, 361–367. [Google Scholar] [CrossRef]
- Han, H.; Kim, J. Active muscle stiffness sensor based on piezoelectric resonance for muscle contraction estimation. Sensors Actuators A Phys. 2013, 194, 212–219. [Google Scholar] [CrossRef]
- Szumilas, M.; Władziński, M.; Wildner, K. A Coupled Piezoelectric Sensor for MMG-Based Human-Machine Interfaces. Sensors 2021, 21, 8380. [Google Scholar] [CrossRef]
- Silva, J.; Chau, T. Coupled microphone-accelerometer sensor pair for dynamic noise reduction in MMG signal recording. Electron. Lett. 2003, 39, 1496–1498. [Google Scholar] [CrossRef]
- Wołczowski, A.; Błędowski, M.; Witkowski, J. The System for EMG and MMG Singals Recording for the Bioprosthetic Hand Control. J. Autom. Mob. Robot. Intell. Syst. 2017, 11, 22–29. [Google Scholar] [CrossRef]
- Gregori, B.; Galié, E.; Accornero, N. Surface electromyography and mechanomyography recording: A new differential composite probe. Med Biol. Eng. Comput. 2003, 41, 665–669. [Google Scholar] [CrossRef]
- Fukuhara, S.; Oka, H. A Simplified Analysis of Real-time Monitoring of Muscle Contraction during Dynamic Exercise Using an MMG/EMG Hybrid Transducer System. Adv. Biomed. Eng. 2019, 8, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, X.; Samuel, O.W.; Huang, Z.; Fang, P.; Li, G. Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy. Front. Neurorobotics 2017, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaas, A.; Goebel, R.; Valente, G.; Sorger, B. Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing. Front. Hum. Neurosci. 2019, 13, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, F.; Pearlmutter, B.A.; Wards, T.E.; Soraghan, C.; Markham, C. Hemodynamics for Brain-Computer Interfaces. IEEE Signal Process. Mag. 2008, 25, 87–94. [Google Scholar] [CrossRef]
- Fukuma, R.; Yanagisawa, T.; Saitoh, Y.; Hosomi, K.; Kishima, H.; Shimizu, T.; Sugata, H.; Yokoi, H.; Hirata, M.; Kamitani, Y.; et al. Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients. Sci. Rep. 2016, 6, 21781. [Google Scholar] [CrossRef] [Green Version]
- Faress, A.; Chau, T. Towards a multimodal brain–computer interface: Combining fNIRS and fTCD measurements to enable higher classification accuracy. NeuroImage 2013, 77, 186–194. [Google Scholar] [CrossRef]
- Lu, J.; Mamun, K.A.; Chau, T. Pattern classification to optimize the performance of Transcranial Doppler Ultrasonography-based brain machine interface. Pattern Recognit. Lett. 2015, 66, 135–143. [Google Scholar] [CrossRef]
- Khalaf, A.; Sejdic, E.; Akcakaya, M. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound. J. Neurosci. Methods 2019, 313, 44–53. [Google Scholar] [CrossRef]
- Lystad, R.P.; Pollard, H. Functional neuroimaging: A brief overview and feasibility for use in chiropractic research. J. Can. Chiropr. Assoc. 2009, 53, 59–72. [Google Scholar]
- Min, B.-K.; Marzelli, M.J.; Yoo, S.-S. Neuroimaging-based approaches in the brain–computer interface. Trends Biotechnol. 2010, 28, 552–560. [Google Scholar] [CrossRef]
- He, B.; Yang, L.; Wilke, C.; Yuan, H. Electrophysiological Imaging of Brain Activity and Connectivity—Challenges and Opportunities. IEEE Trans. Biomed. Eng. 2011, 58, 1918–1931. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Sitaram, R.; Weiskopf, N.; Caria, A.; Veit, R.; Erb, M.; Birbaumer, N. fMRI Brain-Computer Interfaces. IEEE Signal Process. Mag. 2008, 25, 95–106. [Google Scholar] [CrossRef]
- Ge, S.; Yang, Q.; Wang, R.; Lin, P.; Gao, J.; Leng, Y.; Yang, Y.; Wang, H. A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System. IEEE Access 2017, 5, 208–218. [Google Scholar] [CrossRef]
- Hämäläinen, M.S. Magnetoencephalography: A tool for functional brain imaging. Brain Topogr. 1992, 5, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, L.; Nykopp, T.; Lehtonen, J.; Jylanki, P.; Heikkonen, J.; Rantanen, P.; Alaranta, H.; Sams, M. EEG and MEG brain-computer interface for tetraplegic patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 190–193. [Google Scholar] [CrossRef]
- Rashid, M.; Sulaiman, N.; Majeed, A.P.P.A.; Musa, R.M.; Nasir, A.F.A.; Bari, B.S.; Khatun, S. Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front. Neurorobotics 2020, 14, 25. [Google Scholar] [CrossRef]
- Saha, S.; Mamun, K.A.; Ahmed, K.; Mostafa, R.; Naik, G.R.; Darvishi, S.; Khandoker, A.H.; Baumert, M. Progress in Brain Computer Interface: Challenges and Opportunities. Front. Syst. Neurosci. 2021, 15, 578875. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Clerc, M. Electroencephalography (EEG)-Based Brain-Computer Interfaces. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley Online Library: Hoboken, NJ, USA, 2015; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wyckoff, S.N.; Sherlin, L.H.; Ford, N.L.; Dalke, D. Validation of a wireless dry electrode system for electroencephalography. J. Neuroeng. Rehabil. 2015, 12, 95. [Google Scholar] [CrossRef]
- Zander, T.O.; Lehne, M.; Ihme, K.; Jatzev, S.; Correia, J.; Kothe, C.; Picht, B.; Nijboer, F. A Dry EEG-System for Scientific Research and Brain–Computer Interfaces. Front. Behav. Neurosci. 2011, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Kutilek, P.; Volf, P.; Viteckova, S.; Smrcka, P.; Krivanek, V.; Lhotska, L.; Hana, K.; Doskocil, R.; Navratil, L.; Hon, Z.; et al. Proceedings of the Wearable systems for monitoring the health condition of soldiers: Review and application. Brno, Czech Republic, 31 May–2 June 2017; pp. 748–752. [Google Scholar] [CrossRef]
- Asselin, P.; Knezevic, S.; Kornfeld, S.; Cirnigliaro, C.; Agranova-Breyter, I.; Bauman, W.A.; Spungen, A.M. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 2015, 52, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Onose, G.; Cârdei, V.; Crãciunoiu, Ş.T.; Avramescu, V. Mechatronic Orthotic Device. In Concept, Sumptions and Functional-Construction Aspects; onal-Construction Aspects; Editura ICTCM: Bucuresti, Romania, 2012. [Google Scholar]
- Onose, G.; Cârdei, V.; Crăciunoiu, T.; Avramescu, V.; Opriş, I.; Lebedev, M.A.; Constantinescu, M.V. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach. Front. Neurosci. 2016, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Díaz, I.; Gil, J.J.; Sánchez, E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. J. Robot. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rupal, B.S.; Rafique, S.; Singla, A.; Singla, E.; Isaksson, M.; Virk, G.S. Lower-limb exoskeletons. Int. J. Adv. Robot. Syst. 2017, 14, 172988141774355. [Google Scholar] [CrossRef]
- Zoss, A.; Kazerooni, H.; Chu, A. On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3465–3472. [Google Scholar] [CrossRef]
- Kwa, H.K.; Noorden, J.H.; Missel, M.; Craig, T.; Pratt, J.E.; Neuhaus, P.D. Development of the IHMC Mobility Assist Exoskeleton. In Proceedings of the Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2556–2562. [Google Scholar] [CrossRef]
- Fontana, M.; Vertechy, R.; Marcheschi, S.; Salsedo, F.; Bergamasco, M. The Body Extender: A Full-Body Exoskeleton for the Transport and Handling of Heavy Loads. IEEE Robot. Autom. Mag. 2014, 21, 34–44. [Google Scholar] [CrossRef]
- Lim, D.; Kim, W.; Lee, H.; Kim, H.; Shin, K.; Park, T.; Lee, J.; Han, C. Development of a lower extremity Exoskeleton Robot with a quasi-anthropomorphic design approach for load carriage. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 5345–5350. [Google Scholar] [CrossRef]
- Walsh, C.; Paluska, D.; Pasch, K.; Grand, W.; Valiente, A.; Herr, H. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings of the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 3485–3491. [Google Scholar] [CrossRef]
- Walsh, C.J.; Endo, K.; Herr, H.M. A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Robot. 2007, 4, 487–506. [Google Scholar] [CrossRef]
- Zoss, A.B.; Kazerooni, H.; Chu, A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 2006, 11, 128–138. [Google Scholar] [CrossRef]
- Kazerooni, H.; Steger, R.; Huang, L. Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). Int. J. Robot. Res. 2006, 25, 561–573. [Google Scholar] [CrossRef]
- Gui, L.; Yang, Z.; Yang, X.; Gu, W.; Zhang, Y. Design and Control Technique Research of Exoskeleton Suit. Jinan, China, 18–21 August 2007; pp. 541–546. [Google Scholar] [CrossRef]
- Yoshimitsu, T.; Yamamoto, K. Development of a power assist suit for nursing work. In Proceedings of the SICE 2004 Annual Conference, Sapporo, Japan, 4–6 August 2004; Volume 1, pp. 577–580. [Google Scholar]
- Kim, W.-S.; Lee, S.-H.; Lee, H.-D.; Yu, S.-N.; Han, J.-S.; Han, C.-S. Development of the heavy load transferring task oriented exoskeleton adapted by lower extremity using qausi—Active joints. In Proceedings of the ICCAS-SICE, Fukuoka, Japan, 18–21 August 2009; pp. 1353–1358. [Google Scholar]
- Kazerooni, H.; Racine, J.L.; Huang, L.; Steger, R. On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 4353–4360. [Google Scholar]
- Toyama, S.; Yamamoto, G. Development of Wearable-Agri-Robot—Mechanism for agricultural work. In Proceedings of the Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, 10–15 October 2009; pp. 5801–5806. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hyodo, K.; Ishii, M.; Matsuo, T. Development of Power Assisting Suit for Assisting Nurse Labor. JSME Int. J. Ser. C 2002, 45, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yu, Y.; Ge, Y.; Sun, J.; Deng, X. WPAL for Enhancing Human Strength and Endurance during Walking. In Proceedings of the Information Acquisition, 2007. ICIA ’07. International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing Corporate Author, Taichung, Taiwan, 5–7 June 2007; pp. 487–491. [Google Scholar] [CrossRef]
- Raj, A.K.; Neuhaus, P.D.; Moucheboeuf, A.M.; Noorden, J.H.; Lecoutre, D.V. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance. J. Robot. 2011, 2011, 8. [Google Scholar] [CrossRef] [Green Version]
- Neuhaus, P.D.; Noorden, J.H.; Craig, T.J.; Torres, T.; Kirschbaum, J.; Pratt, J.E. Design and evaluation of Mina: A robotic orthosis for paraplegics. IEEE Int. Conf. Rehabil. Robot. 2011, 2011, 5975468. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Talaty, M.; Packel, A.; Saulino, M. The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2012, 91, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, W.Y.-W.; McKinley, M.; Pillai, M.V.; Reid, J.; Kazerooni, H. Design of a Minimally Actuated Medical Exoskeleton With Mechanical Swing-Phase Gait Generation and Sit-Stand Assistance. Dyn. Syst. Control. Conf. 2013, 56130, V002T28A004. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Meijneke, C.; van Asseldonk, E.; Hoellinger, T.; Cheron, G.; Ivanenko, Y.; La Scaleia, V.; Sylos-Labini, F.; Molinari, M.; et al. Design and Control of the MINDWALKER Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 277–286. [Google Scholar] [CrossRef]
- Belforte, G.; Gastaldi, L.; Sorli, M. Pneumatic active gait orthosis. Mechatronics 2001, 11, 301–323. [Google Scholar] [CrossRef]
- Farris, R.J.; Quintero, H.A.; Goldfarb, M. Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 1908–1911. [Google Scholar] [CrossRef] [Green Version]
- Bacek, T.; Moltedo, M.; Langlois, K.; Prieto, G.A.; Sanchez-Villamanan, M.C.; Gonzalez-Vargas, J.; Vanderborght, B.; Lefeber, D.; Moreno, J.C. BioMot exoskeleton—Towards a smart wearable robot for symbiotic human-robot interaction. IEEE Int. Conf. Rehabil. Robot. 2017, 2017, 1666–1671. [Google Scholar] [CrossRef]
- Pröbsting, E.; Kannenberg, A.; Zacharias, B. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis. Prosthetics Orthot. Int. 2017, 41, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Beil, J.; Perner, G.; Asfour, T. Design and Control of the Lower Limb Exoskeleton KIT-EXO-1. In Proceedings of the IEEE In-ternational Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 119–124. [Google Scholar] [CrossRef]
- Asín-Prieto, G.; Martínez-Expósito, A.; Barroso, F.O.; Urendes, E.J.; Gonzalez-Vargas, J.; Alnajjar, F.S.; González-Alted, C.; Shimoda, S.; Pons, J.L.; Moreno, J.C. Haptic Adaptive Feedback to Promote Motor Learning with a Robotic Ankle Exoskeleton Integrated with a Video Game. Front. Bioeng. Biotechnol. 2020, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- McGibbon, C.A.; Sexton, A.; Jayaraman, A.; Deems-Dluhy, S.; Gryfe, P.; Novak, A.; Dutta, T.; Fabara, E.; Adans-Dester, C.; Bonato, P. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: An open-label, randomized, cross-over trial. J. Neuroeng. Rehabil. 2018, 15, 117. [Google Scholar] [CrossRef]
- Ekelem, A.; Goldfarb, M. Supplemental Stimulation Improves Swing Phase Kinematics During Exoskeleton Assisted Gait of SCI Subjects with Severe Muscle Spasticity. Front. Neurosci. 2018, 12, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, L.N.; Esquenazi, A.; Francisco, G.E.; Nolan, K.J.; Jayaraman, A. The ReWalk ReStore™ soft robotic exosuit: A multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J. Neuroeng. Rehabil. 2020, 17, 80. [Google Scholar] [CrossRef]
- Rueterbories, J.; Spaich, E.G.; Larsen, B.; Andersen, O.K. Methods for gait event detection and analysis in ambulatory systems. Med Eng. Phys. 2010, 32, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.; Janssen, A.J.; van der Kamp, B. Body position can be monitored in 3D using miniature accelerometers and earth-magnetic field sensors. Electroencephalogr. Clin. Neurophysiol. Mot. Control 1998, 109, 484–488. [Google Scholar] [CrossRef]
- Williamson, R.; Andrews, B.J. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Med Biol. Eng. Comput. 2001, 39, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, W.; Bisseling, R. Estimation of hip abduction moment based on body fixed sensors. Clin. Biomech. 2004, 19, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, D.; Macellari, V.; Maccioni, G.; Cappozzo, A. Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Trans. Biomed. Eng. 2003, 50, 476–483. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, S.; Wei, D.; Marschollek, M.; Zhang, W. State of the Art in Gait Analysis Using Wearable Sensors for Healthcare Applications. In Proceedings of the 2012 IEEE/ACIS 11th International Conference on Computer and Information Science, Shanghai, China, 30 May–1 June 2012; pp. 213–218. [Google Scholar] [CrossRef]
- Kavanagh, J.J.; Menz, H. Accelerometry: A technique for quantifying movement patterns during walking. Gait Posture 2008, 28, 1–15. [Google Scholar] [CrossRef]
- Shi, J.; Zheng, Y.; Yan, Z. Prediction of wrist angle from sonomyography signals with artificial neural networks technique. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 2006, 3549–3552. [Google Scholar] [CrossRef]
- Zheng, Y.; Chan, M.; Shi, J.; Chen, X.; Huang, Q. Sonomyography: Monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med Eng. Phys. 2006, 28, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Hodges, P.; Pengel, L.; Herbert, R.; Gandevia, S. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 2003, 27, 682–692. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.-P.; Guo, J.-Y.; Shi, J. Sonomyography (SMG) Control for Powered Prosthetic Hand: A Study with Normal Subjects. Ultrasound Med. Biol. 2010, 36, 1076–1088. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Muñoz, M.; Cuesta-Vargas, A.I. Electromyography and sonomyography analysis of the tibialis anterior: A cross sectional study. J. Foot Ankle Res. 2014, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue. Sensors 2011, 11, 3545–3594. [Google Scholar] [CrossRef] [Green Version]
- Jarić, S.; Radovanović, S.; Milanović, S.; Ljubisavljević, M.; Anastasijević, R. A comparison of the effects of agonist and antagonist muscle fatigue on performance of rapid movements. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-Y.; Zheng, Y.-P.; Huang, Q.-H.; Chen, X. Dynamic monitoring of forearm muscles using one-dimensional sonomyography system. J. Rehabil. Res. Dev. 2008, 45, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, H.; Ugalde, I.; Figueroa, N.; El Saddik, A. Towards Whole Body Fatigue Assessment of Human Movement: A Fatigue-Tracking System Based on Combined sEMG and Accelerometer Signals. Sensors 2014, 14, 2052–2070. [Google Scholar] [CrossRef] [Green Version]
- Taelman, J.; Vanderhaegen, J.; Robijns, M.; Naulaers, G.; Spaepen, A.; Van Huffel, S. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy. Adv. Exp. Med. Biol. 2011, 701, 353–359. [Google Scholar] [CrossRef]
- Perry-Rana, S.R.; Housh, T.J.; Johnson, G.O.; Bull, A.J.; Ms, J.M.B.; Cramer, J. MMG and EMG responses during fatiguing isokinetic muscle contractions at different velocities. Muscle Nerve 2002, 26, 367–373. [Google Scholar] [CrossRef]
- Gams, A.; Petrič, T.; Debevec, T.; Babič, J. Effects of Robotic Knee Exoskeleton on Human Energy Expenditure. IEEE Trans. Biomed. Eng. 2013, 60, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, J.; Tyler, D.J. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 2014, 6, 257ra138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raspopovic, S.; Capogrosso, M.; Petrini, F.M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.; Fernandez, E.; et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 2014, 6, 222ra19. [Google Scholar] [CrossRef] [PubMed]
- Romero-Laiseca, M.A.; Delisle-Rodriguez, D.; Cardoso, V.; Gurve, D.; Loterio, F.; Nascimento, J.H.P.; Krishnan, S.; Neto, A.F.; Bastos-Filho, T. A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 988–996. [Google Scholar] [CrossRef]
- Yuan, W.; Li, Z. Brain Teleoperation Control of a Nonholonomic Mobile Robot Using Quadrupole Potential Function. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 527–538. [Google Scholar] [CrossRef]
- Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, O.; Msc, F.L.B.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis, A.; et al. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 2013, 74, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Scandaroli, G.G.; Borges, G.A.; Ishihara, J.Y.; Terra, M.H.; da Rocha, A.F.; Nascimento, F.A.D.O. Estimation of foot orientation with respect to ground for an above knee robotic prosthesis. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1112–1117. [Google Scholar] [CrossRef]
- Carlson, T.; Millan, J.D.R. Brain-Controlled Wheelchairs: A Robotic Architecture. IEEE Robot. Autom. Mag. 2013, 20, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 53001. [Google Scholar] [CrossRef]
- Gonçalves, C.; da Silva, A.F.; Gomes, J.; Simoes, R. Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions 2018, 3, 14. [Google Scholar] [CrossRef]
Criterion | Definition [34] | Exoskeletons Sensor Requirements |
---|---|---|
Effectiveness | How much the device improves one’s living situation, enhances functional capability and independence. | Sensed values need to be captured in such a way (e.g., kind of signal, frequency) that the exoskeleton can maintain the operator’s quality of movement. |
Affordability | The extent to which a person can purchase, maintain, and repair a device without financial hardship. | Sensors on the exoskeleton should not be too financially demanding to remain financially viable. |
Reliability | The degree to which a device is dependable, consistent, and predictable in its performance and level of accuracy under reasonable use. | The sensors should output consistent and predictable values despite environmental conditions such as water droplets, moisture, and sweat. |
Portability | The influence of the device’s size and weight on the user’s ability to move, carry, relocate, and operate it in varied locations. | The sensors should be portable, small, and energy-saving. |
Durability | The extent to which a device delivers continued operation for an extended period of time. | The expected useful lifetime of the sensor (despite environmental impurities, e.g., dust). |
Securability | How well a consumer believes a device affords physical control and can be secured from theft or vandalism. | The sensors should be suitably attached to the structure of the exoskeleton. |
Safety | The physical security a device affords the user, and how well it protects the user, care provider, or family member from potential harm, bodily injury, or infection. | The protection of the operator from potential harm, injury, infection, etc. |
Learnability | The perspective of the device’s ease of assembly, initial learning requirements, and time and effort to master use. | Initial learning difficulty to use (e.g., attach, detach) the sensors. |
Comfort/Acceptance | The extent to which a user feels physically comfortable with the device and does not experience pain or discomfort with use; how aesthetically appealing the user finds the device and the user’s psychological comfort when using it in private or public. | The fit, appearance does not cause the user to feel stigmatized while using the device. |
Maintenance/Reparability | The degree to which the device is easy to maintain and repair (either by the consumer, a local repair shop, or a supplier). | The same as definition. |
Operability | The extent to which the device is easy to use, adaptable and flexible, and affords easy access to controls and displays. | The perspective of the sensor being easily fastened in the intended position (with respect to the operator’s body) including a certain tolerance to the exact position. |
Criterion | Required in Assistive Exoskeletons | Required in Empowering Exoskeletons |
---|---|---|
Effectiveness | Yes | Yes |
Affordability | Yes | No |
Reliability | Yes | Yes |
Durability | Yes | Yes |
Learnability | Yes | Yes |
Comfort/Acceptance | Yes | No |
Maintenance/Reparability | Yes | Yes |
Operability | Yes | Yes |
Kinematics Sensors | Kinetics | Muscles Activity | |||||||
---|---|---|---|---|---|---|---|---|---|
Exoskeleton | Hip | Knee | Ankle | Other | Thigh | Shank | Foot | Other | |
BLEEX [103,109,110,114] | - | - | - | A and E built-in in exoskeleton structures | - | - | FS | - | - |
MIT exoskeleton [107,108] | Po | Po | - | - | F | S | - | - | - |
Agri-Robot [115] | Po | Po | Po | Po on shoulder and elbow; G (placement is not published) | - | - | - | F (placement is not published) | - |
PERCRO BE [105] | - | - | - | A on the trunk | - | - | F | F on the trunk, hands | - |
NAEIES [111] | - | - | - | Po on forearm | - | - | - | - | - |
HEXAR- CR50 [106] | - | - | - | - | F | - | F | F in the waist harness | - |
Nursing exoskeleton [112,116] | - | - | - | - | - | - | - | - | MSS above the knees; EMG sensor on the upper arms and back above the hip |
Hanyang University exoskeleton [113] | - | - | - | - | - | - | - | - | MSS on the thigh above the knees, MSS on the calf below the knee |
WPAL (walking power assist leg) [117] | E | E | - | - | F | F | F | - | - |
IHMC mobility assist exoskeleton [104,118] and Mina [119] | - | - | - | position sensors on the actuators | - | - | P | F on the actuators | - |
ReWalk [120] | - | - | - | tilt sensor on the torso | - | - | - | - | - |
Rex | - | - | - | - | - | - | - | - | - |
ELegs | - | - | - | - | - | - | - | - | - |
HAL-5 Type-B | Po | Po | - | - | - | P | - | EMG sensors on thigh | |
HAL-5 Type-C | Po | Po | - | - | - | P | - | - | |
AUSTIN [121] | E | - | - | - | - | - | - | - | - |
MindWalker [122] | E | E | E | - | - | - | - | - | - |
By G. Belforte [123] | Po | Po | - | - | - | - | - | - | - |
Indego/Wanderbilt [124] | E | E | - | - | - | - | - | - | - |
BioMot [125] | E | E | E | - | - | - | - | - | - |
C Brace [126] | - | angle sensor, velocity sensor | - | - | - | - | - | ankle moment sensor | - |
Exo-Lite [127] | - | - | - | angle sensor | - | - | P | - | - |
H-MEX | - | - | - | - | - | - | F | - | - |
Hank [128] | - | - | - | - | F | F | F | - | - |
Keeogo [129] | - | - | - | knee, hip, thigh, no definition | - | - | - | - | - |
KIT-EXO-1 [127] | - | - | - | - | F | - | F | - | - |
INDEGO [130] | angle sensor | angle sensor | - | A on the thigh, tilt sensor on the trunk | - | - | - | - | - |
ReStore [131] | - | - | - | inertial sensor on calf | - | F | - | - | - |
ExoRoboWalker | Po | Po | Po | - | - | - | P | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neťuková, S.; Bejtic, M.; Malá, C.; Horáková, L.; Kutílek, P.; Kauler, J.; Krupička, R. Lower Limb Exoskeleton Sensors: State-of-the-Art. Sensors 2022, 22, 9091. https://doi.org/10.3390/s22239091
Neťuková S, Bejtic M, Malá C, Horáková L, Kutílek P, Kauler J, Krupička R. Lower Limb Exoskeleton Sensors: State-of-the-Art. Sensors. 2022; 22(23):9091. https://doi.org/10.3390/s22239091
Chicago/Turabian StyleNeťuková, Slávka, Martin Bejtic, Christiane Malá, Lucie Horáková, Patrik Kutílek, Jan Kauler, and Radim Krupička. 2022. "Lower Limb Exoskeleton Sensors: State-of-the-Art" Sensors 22, no. 23: 9091. https://doi.org/10.3390/s22239091
APA StyleNeťuková, S., Bejtic, M., Malá, C., Horáková, L., Kutílek, P., Kauler, J., & Krupička, R. (2022). Lower Limb Exoskeleton Sensors: State-of-the-Art. Sensors, 22(23), 9091. https://doi.org/10.3390/s22239091