Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review
Abstract
:1. Introduction
2. Biosensing Techniques
2.1. Sonomyography (SMG)
2.2. Elastography
2.3. Mecanomyography (MMG)
2.4. Electromyography (EMG)
2.5. Additional Techniques
3. Research and Application
3.1. Human–Machine Interface
3.1.1. A-Mode Ultrasound
3.1.2. B-Mode Ultrasound
3.1.3. M-Mode Ultrasound
3.1.4. Multi-Sensor Studies without Ultrasound
Authors | Signals | Region | Specifications | Data and Features | Subjects |
---|---|---|---|---|---|
Guo et al., 2009 [13] | US, EMG | Forearm | 10 MHz A-Mode Transducer, with a diameter of 6 mm inserted into a support made with silicone gel of 20 mm in diameter; A-mode with 17 Hz frame rate | Muscle Deformation Signal (SMG); RMS EMG | 16 (8 men and 8 women) |
Guo et al., 2011 [8] | US, EMG, Force and Direction Sensors, Goniometer | Long Radial Extensor of the Carpus | 10 MHz A-Mode Transducer, 7 mm diameter | RMS EMG; 1D SMG; Wrist Angle; Force | 16 (8 men and 8 women) |
Geng et al., 2012 [74] | EMG, MMG | Forearm | Classifier: LDA | EMG: MAV, ZC, WL, and SSC. MMG: MAV, Variation, and Maximum Value | 5 (4 men and 1 woman) |
Yang et al., 2018 [56] | US | Forearm | 5 MHz A-Mode Transducer, 14 mm diameter and 18 mm height; Classifiers: LDA and SVM | US A-Mode, Method for Feature Extraction: Segmentation and Linear Fitting | 8 men |
Xia et al., 2019 [62] | US, sEMG | Forearm | 5 MHz Linear US Transducer; Custom EMG and US Acquisition Module. | EMG: MAV, WL, ZC, SSC, and AR6. US: MSD | 8 men |
Dhawan et al., 2019 [68] | US | Forearm | US images at 15 Frames per Second (FPS). Classifier: kNN | Position Error, Error Stability, Task Completion, and Movement Time | 5 (4 unilateral amputations and 1 bilateral upper-limb amputation) + 5 healthy (control group) |
Wang et al., 2020 [63] | US, EMG | Forearm | 5 MHz US Transducer with 10 FPS | EMG: RMS, MAV, WL, and AR4 | One subject with trans-radial amputation |
Botros et al., 2020 [75] | EMG | Wrist, Forearm | Classifier: LDA and SVM | EMG: RMS, MAV, WL, ZC, and SSC | 21 subjects (14 men and 7 women) |
Jahanandish et al., 2020 [11] | US | Rectus Femoris (RF) | US Transducer with 50 dB Dynamic Range | Muscle Thickness; Angle between Aponeuroses; Pennation Angle; Fasciculus Length; echogenicity | 9 (5 men and 4 women) |
Zhang et al., 2021 [70] | US, EMG | Ankle, Tibialis Anterior (TA) | Linear US Transducer with 6.4 MHz Center Frequency. Models: LR, FFNN, and HNM | Pennation Angle, Fasciculus Length, Echogenicity, sEMG Mean RMS, Maximum Force, and Moment | 3 men |
Souza et al., 2021 [76] | EMG, ACC, Sliding and Force Sensors | Forearm | 12 EMG and 36 ACC. Classifier: PCA, LDA, RFT, and MLP | EMG: MAV, RMS, WL, logRMS, Variance, Kurtosis, and Skewness | Dataset NinaPro DB2: 34 (12 women and 28 men); DB3: 11 trans-radial amputee (11 men) |
Rabe et al., 2021 [69] | US, EMG | Rectus Femoris (RF), Vastus Medialis (VM), Vasto Intermediate (VI) | 128-element Linear US Transducer with a Transmission Frequency of 7.5 MHz and a Dynamic Range of 50 dB. Custom Synchronization Software Displays US Images and EMG Signals with 1 ms Temporal Resolution. | 5-EMG, 8-EMG: MAV, SSC, ZC, WL, and 2 coefs. AR4 US: Aponeurosis Angle, Muscle Thickness, Fascicle Length, and Echogenicity | 10 |
X. Yang et al., 2021 [65] | US | Wrist | A-Mode Transducer with a Diameter of 9 mm and Height of 11 mm | Wrist Rotation Angle (Mean, Standard Deviation, Maximum, Minimum, Sum, Skewness, Kurtosis) | 8 men |
J. Li et al., 2022 [73] | US | Forearm | US 5–12 MHz Linear Transducer with 50 × 4 mm Contact Surface; Videos Stored at 30 Hz. Classifier: SVM and BP | Separability Index (SI) and Mean Semi-Principal Axis (MSA) | 8 (7 men and one woman) |
LU et al., 2022 [66] | US | Forearm | 4-channel A-Mode Ultrasound at 10 FPS. Classifier: LDA, SVM, and Naive Bayes (NB) | Mean, Variance, and Energy | 10 (8 men and 2 women) |
3.2. Physiological Studies
3.2.1. Signal Correlations
3.2.2. Gait Analysis
3.2.3. Ultrasound in Motor Unit Analysis
Authors | Signals | Region | Specifications | Data & Features | Subjects |
---|---|---|---|---|---|
Chen et al., 2012 [27] | US, EMG, MMG | Rectus Femoris (RF) | NI PCI with 25 FPS and 0.15 mm resolution; Image Processing Method via “Deformation Tracking” for Continuous CSA Extraction | RMS EMG, RMS MMG, Cross-Section Area (CSA), and Torque | 9 (6 men and 3 women) |
H. Li et al., 2014 [82] | US, EMG | Tibialis Anterior (TA) | US Transducer with 7.5 MHz at a Detection Depth of 70 mm; 128 frames in 10 s | SMG: TC (Thickness Change). EMG: RMS | 12 (9 men and 3 women) |
Qiu et al., 2016 [84] | US, NMES | Quadriceps Femoris (Rectus Femoris (RF), Vastus Intermediate (VI), Vastus Medialis (VM), and Vastus Lateralis (VL)) | US 3.5 MHz Transducer; Capture Card for 25 FPS B-Mode; Stimulation Pulse of 300 US and Frequency of 25 Hz, Stimulation Current from 0 to 150 mA (470 Ohms) | Muscle Thickness and Joint Angle (JA) | 7 (5 men and 2 women) |
Chen et al., 2017 [80] | US, EMG, Goniometer | Gastrocnemius (GM) | Video Capture Card with 25 FPS | RMS EMG, Pennation Angle (PA), and Joint Angle (JA) | 12 (9 men and 3 women) patients with chronic and subacute stroke |
Ma et al., 2019 [10] | US, EMG, MMG, Force Sensor, Goniometer | Lateral Head of Gastrocnemius, Tibialis Anterior (TA), Ankle, Heel, Forefoot | US Probe with 7.5 MHz; VICON with 250 Hz; Power Plate with 1 kHz; Ultrasound Images at 10 FPS | Normalized EMG and MMG peak value; CSA; Joint Angle and Force | 10 (7 men and 3 women) |
Woodward et al., 2019 [4] | EMG, MMG, IMU | Rectus Femoris (RF) | IMU with Triaxial 2000° per Second Gyroscope (STMicroelectronics L3G4200D), 16 g Triaxial Accelerometer (Analog Devices ADXL345), 8 G Magnetometer (Honeywell HMC5883L), and a −500 to +9000 m Barometer (Bosch BMP085) | MPF and RMS EMG and MMG signals | 5 (4 men and 1 woman) |
Ling et al., 2020 [54] | US, EMG, MMG, Force Sensor | Tibialis Anterior (TA) | Ultrasound images at 20,000 FPS with an imaging depth of 3.5 cm | Movement Onset Time: EMG, MMG, SMMG, and Force | P1: 7 (3 men and 4 women); P2: 8 (5 men and 3 women) |
Nuckols et al., 2020 [12] | US, EMG, Force Sensor, Calorimetry System, Motion Capture System | Soleus (SO) | 7.5 MHz 96-Element US Transducer: Automatic Software to Determine FL and PA; Vicon with 44 Reflective Markers to Capture 6 DOF of the Foot, Shin, Thigh, and Pelvis | Joint Velocity, Joint Angle, RMS sEMG, Muscle Force, Fasciculus Length (FL), CSA | 11 (7 men and 4 women) |
DeJong et al., 2020 [83] | US, EMG | Gluteus | 8 MHz US Wireless Linear Transducer in Mode-B; Vicon Sampled at 250 Hz with MotionMonitor software (Innovative Sports Training, Chicago, IL, USA) | sEMG RMS, Muscle Thickness Change (TC) | 14 women |
Rohlén et al., 2020 [85] | US | Forearm | 9 MHz US Linear Transducer; US Images Sampled at 2000 FPS; 128-Channel DAQ Module | Tissue Doppler, Trigger Pattern, Twitch Train, Twitch Response, and Territory | 8 (5 men and 3 women) |
Rohlén et al., 2020 [86] | US, iEMG | Arm | 9 MHz US Linear Transducer; US Images Sampled at 2000 FPS; 128-Channel DAQ module; Concentric Needle Electrode with 38 × 0.45 mm (AMBU Neuroline, DEN) | Tissue Doppler, US and EMG Trigger Pattern, Twitch Train, Twich Response, and Territory | 9 (4 men and 5 women) |
Fernandes et al., 2021 [87] | US (WUS) | Forearm | 40 mm Linear Probe with 6.6 MHz Center Frequency, B-mode Imaging at 30 FPS. Classifier: LDA | US: DWT-MAV and ENV-LR | 5 |
Zheng et al., 2021 [81] | US, iEMG, sEMG, Reflective Markers, Multi-Electrode Stimulation Matrix | Forearm | 5-10 MHz US Transducer; Images Acquired at 54 FPS; iEMG: 0.05 mm Diameter; Reflective Markers Acquired at 100 FPS; | RMS EMG; Flexion Time; US Average Deformation Field and Resulting Field Divergence | 2 men |
4. Future Trends
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blanc, Y.; Dimanico, U. History of the Study of Skeletal Muscle Function with Emphasis on Kinesiological Electromyography. Open Rehabil. J. 2010, 3, 84–93. [Google Scholar] [CrossRef]
- Dave, H.D.; Shook, M.; Varacallo, M. Anatomy, Skeletal Muscle. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Khodabukus, A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front. Physiol. 2021, 12, 619710. [Google Scholar] [CrossRef]
- Woodward, R.B.; Stokes, M.J.; Shefelbine, S.J.; Vaidyanathan, R. Segmenting Mechanomyography Measures of Muscle Activity Phases Using Inertial Data. Sci. Rep. 2019, 9, 5569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemay, M.A.; Crago, P.E. A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomech. 1996, 29, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tong, R.K.-Y. Combined Ultrasound Imaging and Biomechanical Modeling to Estimate Triceps Brachii Musculotendon Changes in Stroke Survivors. BioMed Res. Int. 2016, 2016, 5275768. [Google Scholar] [CrossRef] [Green Version]
- Scano, A.; Zanoletti, M.; Pirovano, I.; Spinelli, L.; Contini, D.; Torricelli, A.; Re, R. NIRS-EMG for Clinical Applications: A Sys-tematic Review. Appl. Sci. 2019, 9, 2952. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.-Y.; Zheng, Y.-P.; Kenney, L.; Bowen, A.; Howard, D.; Canderle, J.J. A Comparative Evaluation of Sonomyography, Electromyography, Force, and Wrist Angle in a Discrete Tracking Task. Ultrasound Med. Biol. 2011, 37, 884–891. [Google Scholar] [CrossRef]
- Infantolino, B.W.; Challis, J.H. Measuring Subject Specific Muscle Model Parameters of the First Dorsal Interosseous In Vivo. Ann. Biomed. Eng. 2014, 42, 1331–1339. [Google Scholar] [CrossRef]
- Ma, C.Z.-H.; Ling, Y.T.; Shea, Q.T.K.; Wang, L.-K.; Wang, X.-Y.; Zheng, Y.-P. Towards Wearable Comprehensive Capture and Analysis of Skeletal Muscle Activity during Human Locomotion. Sensors 2019, 19, 195. [Google Scholar] [CrossRef] [Green Version]
- Jahanandish, M.H.; Rabe, K.G.; Fey, N.P.; Hoyt, K. Ultrasound Features of Skeletal Muscle Can Predict Kinematics of Up-coming Lower-Limb Motion. Ann. Biomed. Eng. 2021, 49, 822–833. [Google Scholar] [CrossRef]
- Nuckols, R.W.; Dick, T.J.M.; Beck, O.N.; Sawicki, G.S. Ultrasound imaging links soleus muscle neuromechanics and ener-getics during human walking with elastic ankle exoskeletons. Sci. Rep. 2020, 10, 3604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.-Y.; Zheng, Y.-P.; Huang, Q.-H.; Chen, X.; He, J.-F.; Chan, H.L.-W. Performances of One-Dimensional Sonomyography and Surface Electromyography in Tracking Guided Patterns of Wrist Extension. Ultrasound Med. Biol. 2009, 35, 894–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazierli, D.; Ramalli, A.; Boni, E.; Guidi, F.; Tortoli, P. Real-Time Ultrasound Open Platform with an Extendable Number of Channels. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Virtual, 11–16 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Da Costa, R.; Maia, J.M.; Assef, A.A.; Pichorim, S.F.; Gewehr, P.M.; Costa, E.T. Defect Detection in Aluminum Bars Using Impedance and Ultrasonic Attenuation. IEEE Sens. J. 2020, 20, 7400–7413. [Google Scholar] [CrossRef]
- Jensen, J.A.; Holten-Lund, M.F.; Nilsson, R.T.; Hansen, M.; Larsen, U.D.; Domsten, R.P.; Tomov, B.G.; Stuart, M.B.; Nikolov, S.I.; Pihl, M.J.; et al. SARUS: A synthetic aperture real-time ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1838–1852. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.; Kremkau, F. Medical ultrasound systems. Interface Focus 2011, 1, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Van Neer, P.L.M.J.; Matte, G.; Danilouchkine, M.G.; Prins, C.; Adel, F.V.D.; De Jong, N. Super-harmonic imaging: Development of an interleaved phased-array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2010, 57, 455–468. [Google Scholar] [CrossRef]
- Wilson, T.; Zagzebski, J.; Varghese, T.; Chen, Q.; Rao, M. The ultrasonix 500RP: A commercial ultrasound research interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1772–1782. [Google Scholar] [CrossRef]
- Khairalseed, M.; Brown, K.; Parker, K.J.; Hoyt, K. Real-time H-scan ultrasound imaging using a Verasonics research scanner. Ultrasonics 2019, 94, 28–36. [Google Scholar] [CrossRef]
- Boni, E.; Yu, A.C.H.; Freear, S.; Jensen, J.A.; Tortoli, P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1078–1092. [Google Scholar] [CrossRef]
- Jensen, J.; Munk, P. A new method for estimation of velocity vectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 837–851. [Google Scholar] [CrossRef]
- Grushko, S.; Spurný, T.; Černý, M. Control Methods for Transradial Prostheses Based on Remnant Muscle Activity and Its Relationship with Proprioceptive Feedback. Sensors 2020, 20, 4883. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wu, Z.; Zhao, R.; Ni, Y.; Jing, X.; Gao, S. A Review of EMG-, FMG-, and EIT-Based Biosensors and Relevant Human–Machine Interactivities and Biomedical Applications. Biosensors 2022, 12, 516. [Google Scholar] [CrossRef] [PubMed]
- Orizio, C.; Perini, R.; Veicsteinas, A. Changes of muscular sound during sustained isometric contraction up to exhaustion. J. Appl. Physiol. 1989, 66, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Kouzaki, M.; Yoshihisa, T.; Fukunaga, T. Mechanomyogram from the different heads of the quadriceps muscle during incremental knee extension. Eur. J. Appl. Physiol. 1998, 78, 289–295. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.-P.; Guo, J.-Y.; Zhu, Z.; Chan, S.-C.; Zhang, Z. Sonomyographic responses during voluntary isometric ramp contraction of the human rectus femoris muscle. Eur. J. Appl. Physiol. 2011, 112, 2603–2614. [Google Scholar] [CrossRef] [Green Version]
- Stollenwerk, K.; Müllers, J.; Müller, J.; Hinkenjann, A.; Krüger, B. Evaluating an Accelerometer-based System for Spine Shape Monitoring. In Proceedings of the Computational Science and Its Applications—ICCSA, Melbourne, Australia, 2–5 July 2018. [Google Scholar]
- Riaz, Q.; Vögele, A.; Krüger, B.; Weber, A. One Small Step for a Man: Estimation of Gender, Age and Height from Recordings of One Step by a Single Inertial Sensor. Sensors 2015, 15, 31999–32019. [Google Scholar] [CrossRef]
- Fukunaga, T.; Ichinose, Y.; Ito, M.; Kawakami, Y.; Fukashiro, S. Determination of fascicle length and pennation in a contracting human muscle in vivo. J. Appl. Physiol. 1997, 82, 354–358. [Google Scholar] [CrossRef]
- Reeves, D.; Maganaris, C.; Narici, M. Ultrasonic assessment of human skeletal muscle size. Eur. J. Appl. Physiol. 2004, 91, 116–118. [Google Scholar] [CrossRef]
- Zhou, G.-Q.; Chan, P.; Zheng, Y.-P. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics 2015, 57, 72–83. [Google Scholar] [CrossRef]
- Choi, M.-S.; Shin, J.-H.; Park, H.-K.; Lee, W.-H. Reliability and validity of rehabilitative ultrasound images obtained using a hands-free fixed probe in measuring the muscle structures of the tibialis anterior and the gastrocnemius. Phys. Ther. Rehabil. Sci. 2019, 8, 194–201. [Google Scholar] [CrossRef]
- Ophir, J.; Cespedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A quantitative method for imaging the elasticity of bio-logical tissues. Ultrason Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef] [PubMed]
- Sarvazyan, A.P.; Urban, M.W.; Greenleaf, J.F. Acoustic Waves in Medical Imaging and Diagnostics. Ultrasound Med. Biol. 2013, 39, 1133–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Moon, W.; Cho, N.; Chang, J.M.; Moon, H.G.; Han, W.; Noh, D.Y.; Lee, J.C.; Kim, H.C.; Lee, K.B.; et al. Shear-wave elastographic features of breast cancers: Comparison with mechanical elasticity and histopathologic characteristics. Invest. Radiol. 2014, 49, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Au, F.W.-F.; Ghai, S.; Moshonov, H.; Kahn, H.; Brennan, C.; Dua, H.; Crystal, P. Diagnostic Performance of Quantitative Shear Wave Elastography in the Evaluation of Solid Breast Masses: Determination of the Most Discriminatory Parameter. Am. J. Roentgenol. 2014, 203, W328–W336. [Google Scholar] [CrossRef]
- Zhou, J.; Zhan, W.; Chang, C.; Zhang, X.; Jia, Y.; Dong, Y.; Zhou, C.; Sun, J.; Grant, E.G. Breast lesions: Evaluation with shear wave elastography, with special emphasis on the stiff rim sign. Radiology 2014, 272, 63–72. [Google Scholar] [CrossRef]
- Elkrief, L.; Rautou, P.-E.; Ronot, M.; Lambert, S.; Burgio, M.D.; Francoz, C.; Plessier, A.; Durand, F.; Valla, D.; Lebrec, D.; et al. Prospective Comparison of Spleen and Liver Stiffness by Using Shear-Wave and Transient Elastography for Detection of Portal Hypertension in Cirrhosis. Radiology 2015, 275, 589–598. [Google Scholar] [CrossRef]
- Cassinotto, C.; Lapuyade, B.; Mouries, A.; Hiriart, J.B.; Vergniol, J.; Gaye, D.; Castain, C.; Le Bail, B.; Chermak, F.; Foucher, J.; et al. Non-invasive assessment of liver fibrosis with impulse elastography: Comparison of SuperSonic Shear Imaging with ARFI and FibroScanVR. J. Hepatol. 2014, 61, 550–557. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, J.; Woo, H.; Yu, M.H.; Lee, E.S.; Joo, I.; Lee, K.B.; Yi, N.J.; Lee, Y.J.; Han, J.K.; et al. Shear wave elastography in the evaluation of rejection or recurrent hepatitis after liver trans-plantation. Eur. Radiol. 2013, 23, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liang, J.; Zheng, Y.; Xie, X.; Huang, G.; Zhou, L.; Wang, W.; Lu, M. Two-dimensional shear wave elastography as promising diagnostic tool for predicting malig-nant thyroid nodules: A prospective single-centre experience. Eur. Radiol. 2015, 25, 624–634. [Google Scholar] [CrossRef]
- Samir, A.E.; Dhyani, M.; Anvari, A.; Prescott, J.; Halpern, E.F.; Faquin, W.C.; Stephen, A. Shear-Wave Elastography for the Preoperative Risk Stratification of Follicular-patterned Lesions of the Thyroid: Diagnostic Accuracy and Optimal Measurement Plane. Radiology 2015, 277, 565–573. [Google Scholar] [CrossRef]
- Correas, J.-M.; Tissier, A.-M.; Khairoune, A.; Vassiliu, V.; Méjean, A.; Hélénon, O.; Memo, R.; Barr, R.G. Prostate Cancer: Diagnostic Performance of Real-time Shear-Wave Elastography. Radiology 2015, 275, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehm, K.; Budäus, L.; Tennstedt, P.; Beyer, B.; Schiffmann, J.; Larcher, A.; Simonis, K.; Graefen, M.; Beyersdorff, D.; Salomon, G. Prediction of Significant Prostate Cancer at Prostate Biopsy and Per Core Detection Rate of Targeted and Systematic Biopsies Using Real-Time Shear Wave Elastography. Urol. Int. 2015, 95, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Guo, J.-Y.; Cohen, J.H.; Parker, K.J. Relationship between shear elastic modulus and passive muscle force: An ex-vivo study. J. Biomech. 2013, 46, 2053–2059. [Google Scholar] [CrossRef]
- Raiteri, B.; Hug, F.; Cresswell, A.; Lichtwark, G. Quantification of muscle co-contraction using SuperSonic shear wave imag-ing. J. Biomech. 2016, 49, 493–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Sant, G.; Ates, F.; Brasseur, J.-L.; Nordez, A. Elastography Study of Hamstring Behaviors during Passive Stretching. PLoS ONE 2015, 10, e0139272. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Hirata, K.; Kanehisa, H. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand. J. Med. Sci. Sport. 2017, 27, 99–106. [Google Scholar] [CrossRef]
- Yoshitake, Y.; Takai, Y.; Kanehisa, M.H.; Shinohara, M. Muscle shear modulusmeasured with ultrasound shear-wave elas-tography across a wide range of contraction intensity. Muscle Nerve 2014, 50, 103–113. [Google Scholar] [CrossRef]
- Wang, M.; Byram, B.; Palmeri, M.; Rouze, N.; Nightingale, K. On the precision of time-of-flight shear wave speed estimation in homogeneous soft solids: Initial results using a matrix array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 758–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amador, C.; Aristizabal, S.; Greenleaf, J.F.; Urban, M.W. Effects of Phase Aberration on Acoustic Radiation Force-Based Shear Wave Generation. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 2316–2319. [Google Scholar]
- Stokes, M.J.; Dalton, P.A. Acoustic myography for investigating human skeletal muscle fatigue. J. Appl. Physiol. 1991, 71, 1422–1426. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.T.; Ma, C.Z.-H.; Shea, Q.T.K.; Zheng, Y.-P. Sonomechanomyography (SMMG): Mapping of Skeletal Muscle Motion Onset during Contraction Using Ultrafast Ultrasound Imaging and Multiple Motion Sensors. Sensors 2020, 20, 5513. [Google Scholar] [CrossRef]
- De Luca, C.J.; Merletti, R. Surface EMG crosstalk among muscles of the leg. Electroencephalography and Clinical Neuro-physiology 1988, 69, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, X.; Zhou, D.; Li, Y.; Liu, H. Towards Wearable A-Mode Ultrasound Sensing for Real-Time Finger Motion Recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, E.K.; Skinner, J.; Martucci, M.; Rutkove, S.B.; Halter, R.J. Toward Electrical Impedance Tomography Coupled Ultrasound Imaging for Assessing Muscle Health. IEEE Trans. Med Imaging 2019, 38, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Sanni, A.A.; McCully, K.K. Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle. J. Funct. Morphol. Kinesiol. 2019, 4, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, H.; Suzuki, H.; Nishiyama, T.; Suzuki, M. Comparison of ankle plantar flexor activity between double-leg heel raise and walking. J. Phys. Ther. Sci. 2015, 27, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- Gaudreault, N.; Gravel, D.; Nadeau, S. Evaluation of plantar flexion contracture contribution during the gait of children with Duchenne muscular dystrophy. J. Electromyogr. Kinesiol. 2009, 19, e180–e186. [Google Scholar] [CrossRef]
- Esposito, F.; Limonta, E.; Cè, E. Passive stretching effects on electromechanical delay and time course of recovery in human skeletal muscle: New insights from an electromyographic and mechanomyographic combined approach. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 111, 485–495. [Google Scholar] [CrossRef]
- Xia, W.; Zhou, Y.; Yang, X.; He, K.; Liu, H. Toward Portable Hybrid Surface Electromyography/A-Mode Ultrasound Sensing for Human–Machine Interface. IEEE Sens. J. 2019, 19, 5219–5228. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Y.; Zhou, D.; Li, K.; Cointet, C.; Liu, H. Ultrasonography and electromyography based hand motion intention recognition for a trans-radial amputee: A case study. Med Eng. Phys. 2020, 75, 45–48. [Google Scholar] [CrossRef]
- Wagner, D.R.; Thompson, B.J.; Anderson, D.A.; Schwartz, S. A-mode and B-mode ultrasound measurement of fat thickness: A cadaver validation study. Eur. J. Clin. Nutr. 2018, 73, 518–523. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Hettiarachchi, N.; Yan, J.; Liu, H. A Wearable Ultrasound System for Sensing Muscular Morphological Deformations. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3370–3379. [Google Scholar] [CrossRef]
- Lu, Z.; Cai, S.; Chen, B.; Liu, Z.; Guo, L.; Yao, L. Wearable Real-Time Gesture Recognition Scheme Based on A-Mode Ultrasound. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2623–2629. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, Y.-P. Sonomyography: Dynamic and Functional Assessment of Muscle Using Ultrasound Imaging; Springer Nature: Singapore, 2021; 137p. [Google Scholar] [CrossRef]
- Dhawan, A.S.; Mukherjee, B.; Patwardhan, S.; Akhlaghi, N.; Diao, G.; Levay, G.; Holley, R.; Joiner, W.M.; Harris-Love, M.; Sikdar, S. Proprioceptive Sonomyographic Control: A novel method for intuitive and proportional control of multiple degrees-of-freedom for individuals with upper extremity limb loss. Sci. Rep. 2019, 9, 9499. [Google Scholar] [CrossRef] [Green Version]
- Rabe, K.G.; Jahanandish, M.H.; Boehm, J.R.; Fey, A.M.; Hoyt, K.; Fey, N.P. Ultrasound Sensing Can Improve Continuous Classification of Discrete Ambulation Modes Compared to Surface Electromyography. IEEE Trans. Biomed. Eng. 2021, 68, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Iyer, A.; Kim, K.; Sharma, N. Evaluation of Non-Invasive Ankle Joint Effort Prediction Methods for Use in Neurorehabilitation Using Electromyography and Ultrasound Imaging. IEEE Trans. Biomed. Eng. 2020, 68, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Romero-Morales, C.; Calvo-Lobo, C.; Navarro-Flores, E.; Mazoteras-Pardo, V.; García-Bermejo, P.; López-López, D.; Martínez-Jiménez, E.M.; De-la-Cruz-Torres, B. M-Mode Ultrasound Examination of Soleus Muscle in Healthy Subjects: Intra- and Inter-Rater Reliability Study. Healthcare 2020, 8, 555. [Google Scholar] [CrossRef]
- Bunce, S.; Moore, A.; Hough, A. M-mode ultrasound: A reliable measure of transversus abdominis thickness? Clin. Biomech. 2002, 17, 315–317. [Google Scholar] [CrossRef]
- Li, J.; Zhu, K.; Pan, L. Wrist and finger motion recognition via M-mode ultrasound signal: A feasibility study. Biomed. Signal Process. Control 2022, 71, 103112. [Google Scholar] [CrossRef]
- Geng, Y.; Chen, L.; Tian, L.; Li, G. Comparison of electromyography and mechanomyogram in control of prosthetic system in multiple limb positions. In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, 5–7 January 2012; pp. 788–791. [Google Scholar] [CrossRef]
- Botros, F.S.; Phinyomark, A.; Scheme, E.J. Electromyography-Based Gesture Recognition: Is It Time to Change Focus From the Forearm to the Wrist? IEEE Trans. Ind. Inform. 2020, 18, 174–184. [Google Scholar] [CrossRef]
- Souza, J.O.D.O.D.; Bloedow, M.D.; Rubo, F.C.; de Figueiredo, R.M.; Pessin, G.; Rigo, S.J. Investigation of Different Approaches to Real-Time Control of Prosthetic Hands with Electromyography Signals. IEEE Sens. J. 2021, 21, 20674–20684. [Google Scholar] [CrossRef]
- Wijntjes, J.; van Alfen, N. Muscle ultrasound: Present state and future opportunities. Muscle Nerve. 2021, 63, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Kanagasabai, K. Ultrasound of Median Nerve in the Diagnosis of Carpal Tunnel Syndrome—Correlation with Electrophysiological Studies. Indian J. Radiol. Imaging 2022, 32, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.K.; Kang, H.J.; Byun, C.W.; Yoon, J.S.; Kang, C.H.; Pyun, S.B. Correlation between Ultrasonography Findings and Electrodiagnostic Severity in Carpal Tunnel Syndrome: 3D Ultrasonography. J. Clin. Neurol. 2014, 10, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhang, X.; Shi, W.; Wang, J.; Xiang, Y.; Zhou, Y.; Yang, W.-Z. Ultrasonic Measurement of Dynamic Muscle Behavior for Poststroke Hemiparetic Gait. BioMed Res. Int. 2017, 2017, 8208764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Shin, H.; Kamper, D.G.; Hu, X. Automatic Detection of Contracting Muscle Regions via the Deformation Field of Transverse Ultrasound Images: A Feasibility Study. Ann. Biomed. Eng. 2021, 49, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, G.; Zhou, Y.; Chen, X.; Ji, Z.; Wang, L. Relationship of EMG/SMG features and muscle strength level: An exploratory study on tibialis anterior muscles during plantar-flexion among hemiplegia patients. Biomed. Eng. Online 2014, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeJong, A.F.; Koldenhoven, R.M.; Hertel, J. Cross-correlations between gluteal muscle thickness derived from ultrasound imaging and hip biomechanics during walking gait. J. Electromyogr. Kinesiol. 2020, 51, 102406. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Feng, J.; Xu, J.; Xu, R.; Zhao, X.; Zhou, P.; Qi, H.; Zhang, L.; Ming, D. Sonomyography Analysis on Thickness of Skeletal Muscle During Dynamic Contraction Induced by Neuromuscular Electrical Stimulation: A Pilot Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Rohlen, R.; Stalberg, E.; Stoverud, K.-H.; Yu, J.; Gronlund, C. A Method for Identification of Mechanical Response of Motor Units in Skeletal Muscle Voluntary Contractions Using Ultrafast Ultrasound Imaging—Simulations and Experimental Tests. IEEE Access 2020, 8, 50299–50311. [Google Scholar] [CrossRef]
- Rohlén, R.; Stålberg, E.; Grönlund, C. Identification of single motor units in skeletal muscle under low force isometric voluntary contractions using ultrafast ultrasound. Sci. Rep. 2020, 10, 22382. [Google Scholar] [CrossRef]
- Fernandes, A.J.; Ono, Y.; Ukwatta, E. Evaluation of Finger Flexion Classification at Reduced Lateral Spatial Resolutions of Ultrasound. IEEE Access 2021, 9, 24105–24118. [Google Scholar] [CrossRef]
- Assef, A.A.; de Oliveira, J.; Maia, J.M.; Costa, E.T. FPGA Implementation and Evaluation of an Approximate Hilbert Transform-Based Envelope Detector for Ultrasound Imaging Using the DSP Builder Development Tool. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2813–2816. [Google Scholar] [CrossRef]
- Ramanujam, E.; Perumal, T.; Padmavathi, S. Human Activity Recognition with Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review. IEEE Sens. J. 2021, 21, 13029–13040. [Google Scholar] [CrossRef]
Signals | Robustness | Advantage | Disadvantage | Filters |
---|---|---|---|---|
A-Mode | Can be Miniaturized, Accuracy | Fixed Position | DAS, Butterworth, Band-Pass, Speckle Reduction | |
B-Mode | [X] | Muscle Depth, Multiple Directions and High Accuracy | Computational Cost, Size | |
M-Mode | [X] | Temporal Resolution, Framed Analysis, and High Accuracy | Extremely High Computational Cost, Size | |
sEMG | Excellent Movement Predictor | Noise | Amplifier, Butterworth, Low/High/Band-Pass, Notch, Moving Average | |
MMG | Can Relate to Muscle Strength Level | Acoustic Interference | Amplifier, Butterworth, High/Low/Band-Pass, Moving Average |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, J.; de Souza, M.A.; Assef, A.A.; Maia, J.M. Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review. Sensors 2022, 22, 9232. https://doi.org/10.3390/s22239232
de Oliveira J, de Souza MA, Assef AA, Maia JM. Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review. Sensors. 2022; 22(23):9232. https://doi.org/10.3390/s22239232
Chicago/Turabian Stylede Oliveira, Jonathan, Mauren Abreu de Souza, Amauri Amorin Assef, and Joaquim Miguel Maia. 2022. "Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review" Sensors 22, no. 23: 9232. https://doi.org/10.3390/s22239232
APA Stylede Oliveira, J., de Souza, M. A., Assef, A. A., & Maia, J. M. (2022). Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review. Sensors, 22(23), 9232. https://doi.org/10.3390/s22239232