Sensors Technology for Medical Robotics
Funding
Conflicts of Interest
References
- Nagae, T.; Lee, J. Understanding Emotions in Children with Developmental Disabilities during Robot Therapy Using EDA. Sensors 2022, 22, 5116. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, M.; Taje, R.; Papuc, P.E.; Ambrogi, V. An Analysis of Respiration with the Smart Sensor SENSIRIB in Patients Undergoing Thoracic Surgery. Sensors 2022, 22, 1561. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Meng, X.; Tavakoli, M. Dual Mode pHRI-teleHRI Control System with a Hybrid Admittance-Force Controller for Ultrasound Imaging. Sensors 2022, 22, 4025. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Lee, E.-S.; Choi, S.-B. A Cylindrical Grip Type of Tactile Device Using Magneto-Responsive Materials Integrated with Surgical Robot Console: Design and Analysis. Sensors 2022, 22, 1085. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Choi, S.-B. A New Tactile Transfer Cell Using Magnetorheological Materials for Robot-Assisted Minimally Invasive Surgery. Sensors 2021, 21, 3034. [Google Scholar] [CrossRef] [PubMed]
- Bandari, N.; Dargahi, J.; Packirisamy, M. Optical Fiber Array Sensor for Force Estimation and Localization in TAVI Procedure: Design, Modeling, Analysis and Validation. Sensors 2021, 21, 5377. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.-J.; Kwak, K.-S.; Lim, S.-C. Vision-Based Suture Tensile Force Estimation in Robotic Surgery. Sensors 2021, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, V.F.; Garcia-Morales, I.; Fraile-Marinero, J.C.; Perez-Turiel, J.; Muñoz-Garcia, A.; Bauzano, E.; Rivas-Blanco, I.; Sabater-Navarro, J.M.; Fuente, E.d.l. Collaborative Robotic Assistant Platform for Endonasal Surgery: Preliminary In-Vitro Trials. Sensors 2021, 21, 2320. [Google Scholar] [CrossRef] [PubMed]
- de-la-Torre, R.; Oña, E.D.; Balaguer, C.; Jardón, A. Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review. Sensors 2020, 20, 5251. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.F.; Delisle-Rodriguez, D.; Romero-Laiseca, M.A.; Loterio, F.A.; Gurve, D.; Floriano, A.; Valadão, C.; Silva, L.; Krishnan, S.; Frizera-Neto, A.; et al. Effect of a Brain–Computer Interface Based on Pedaling Motor Imagery on Cortical Excitability and Connectivity. Sensors 2021, 21, 2020. [Google Scholar] [CrossRef] [PubMed]
- Diez, J.A.; Santamaria, V.; Khan, M.I.; Catalán, J.M.; Garcia-Aracil, N.; Agrawal, S.K. Exploring New Potential Applications for Hand Exoskeletons: Power Grip to Assist Human Standing. Sensors 2021, 21, 30. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, V.F. Sensors Technology for Medical Robotics. Sensors 2022, 22, 9290. https://doi.org/10.3390/s22239290
Muñoz VF. Sensors Technology for Medical Robotics. Sensors. 2022; 22(23):9290. https://doi.org/10.3390/s22239290
Chicago/Turabian StyleMuñoz, Víctor F. 2022. "Sensors Technology for Medical Robotics" Sensors 22, no. 23: 9290. https://doi.org/10.3390/s22239290
APA StyleMuñoz, V. F. (2022). Sensors Technology for Medical Robotics. Sensors, 22(23), 9290. https://doi.org/10.3390/s22239290