Non-Standard Electrode Placement Strategies for ECG Signal Acquisition
Abstract
:1. Introduction
- P wave—represents the depolarization of atriums;
- T wave—represents the repolarization of ventricles.
2. Signal Quality Assessment for ECG Signals
2.1. Overview and Perspective
- Uncertain contact between the electrode(s) and skin, causing the saturation and disconcerting peaks in acquired electrocardiogram;
- Motion artifact (MA)-induced interference, caused by the shift of electrode(s) relative to the skin surface causing the impedance of the skin-to-electrode interface to vary;
- Wearable device hardware related artifacts.
- Pre-processing, i.e., noise removal through filtering;
- Feature extraction, i.e., extraction of certain ECG signal features;
- Classification, i.e., labeling, resulting as designation of signals into quality categories.
- Fiducial points detection SQA approaches;
- Non-fiducial properties detection SQA approaches;
- Filtering-based SQA approaches.
2.2. The Method—Signal Quality Assessment
- Peak value (global positive extremum) of R wave (ARwave);
- Peak value of T wave (ATwave);
- Peak value (global negative extremum) of S wave (ASwave);
- Interval between two R waves (TRRint);
- Ratio of maximum RR interval to minimum R interval (RRRintmaxmin).
- The ratio of difference between the minimum and maximum peak values to the maximum values of R, S, and T waves (relative peak amplitude).
- All chosen waves are visible, i.e., the result of feature extraction—the signal is conditionally acceptable and usable even if some waves are indistinguishable.
- Heart rate (HR) between 40 and 180 beats per minute (bpm) [29]. While the normal adult HR is 60–100 bpm, the possible range is much higher, depending on several physiological and medical factors.
2.3. The Method—Distinguishing R Wave from Large T Wave
3. Materials and Methods
3.1. Measurement Devices
3.2. The Method—Measurement Data and Its Acquisition
4. Results
5. Discussion
6. Limitations of the Current Work
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EPC | Electrode Placement Configuration |
TEPC | Thoracic Electrode Placement Configuration |
AEPC | Arm Electrode Placement Configuration |
ECG | Electrocardiography |
ICG | Impedance Cardiography |
HR | Heart Rate |
SQA | Signal Quality Assessment |
PPG | Photoplethysmography |
LVET | Left Ventricular Ejection Time |
PEP | Pre-Ejection Period |
SNR | Signal-To-Noise Ratio |
P-QRS-T | Electrocardiogram Waves |
References
- Rafie, N.; Kashou, A.H.; Noseworthy, P.A. ECG Interpretation: Clinical Relevance, Challenges, and Advances. Hearts 2021, 2, 505–513. [Google Scholar] [CrossRef]
- Bonke, F.I.M. The Sinoatrial Node Function. In Cardiac Pacing; Lüderitz, B., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 5–11. [Google Scholar]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Adv. Sci. 2021, 8, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Kamga, P.; Mostafa, R.; Zafar, S. The Use of Wearable ECG Devices in the Clinical Setting: A Review. Curr. Emerg. Hosp. Med. Rep. 2022, 10, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Beach, C.; Krachunov, S.; Pope, J.; Fafoutis, X.; Piechocki, R.J.; Craddock, I.; Casson, A.J. An Ultra Low Power Personalizable Wrist Worn ECG Monitor Integrated With IoT Infrastructure. IEEE Access 2018, 6, 44010–44021. [Google Scholar] [CrossRef]
- Hannula, M.; Hinkula, H.; Jauhiainen, J. Development and Evaluation of One Arm Electrode Based ECG Measurement System. In Proceedings of the 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Riga, Latvia, 16–20 June 2008; Katashev, A., Dekhtyar, Y., Spigulis, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 234–237. [Google Scholar]
- Raj, P.S.; Hatzinakos, D. Feasibility of single-arm single-lead ECG biometrics. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 2525–2529. [Google Scholar]
- Rachim, V.P.; Chung, W.Y. Wearable Noncontact Armband for Mobile ECG Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1112–1118. [Google Scholar] [CrossRef]
- Lynn, W.D.; Escalona, O.J.; McEneaney, D.J. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: A pilot clinical study. J. Phys. Conf. Ser. 2013, 450, 012026. [Google Scholar] [CrossRef]
- Escalona, O.J.; McFrederick, L.; Borges, M.; Linares, P.; Villegas, R.; Perpiñan, G.I.; McLaughlin, J.; McEneaney, D. Wrist and arm body surface bipolar ECG leads signal and sensor study for long-term rhythm monitoring. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ibrahim, B.; Nathan, V.; Jafari, R. Exploration and validation of alternate sensing methods for wearable continuous pulse transit time measurement using optical and bioimpedance modalities. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 2051–2055. [Google Scholar] [CrossRef]
- Metshein, M.; Gautier, A.; Larras, B.; Frappe, A.; John, D.; Cardiff, B.; Annus, P.; Land, R.; Martens, O. Study of Electrode Locations for Joint Acquisition of Impedance- and Electro-cardiography Signals. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; p. 7264. [Google Scholar] [CrossRef]
- Hafid, A.; Benouar, S.; Kedir-Talha, M.; Attari, M.; Seoane, F. Simultaneous Recording of ICG and ECG Using Z-RPI Device with Minimum Number of Electrodes. J. Sens. 2018, 2018, 3269534. [Google Scholar] [CrossRef]
- Smital, L.; Haider, C.R.; Vitek, M.; Leinveber, P.; Jurak, P.; Nemcova, A.; Smisek, R.; Marsanova, L.; Provaznik, I.; Felton, C.L.; et al. Real-Time Quality Assessment of Long-Term ECG Signals Recorded by Wearables in Free-Living Conditions. IEEE Trans. Biomed. Eng. 2020, 67, 2721–2734. [Google Scholar] [CrossRef]
- Hong, S.; Heo, J.; Park, K.S. Signal Quality Index Based on Template Cross-Correlation in Multimodal Biosignal Chair for Smart Healthcare. Sensors 2021, 21, 7564. [Google Scholar] [CrossRef]
- Mishra, B.; Arora, N.; Vora, Y. Wearable ECG for Real Time Complex P-QRS-T Detection and Classification of Various Arrhythmias. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 870–875. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, Y.; Wu, F.; Huan, R. Optimized Electrode Locations for Wearable Single-Lead ECG Monitoring Devices: A Case Study Using WFEES Modules Based on the LANS Method. Sensors 2019, 19, 4458. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Thakur, R.S.; Yadav, R.N.; Gupta, L.; Raghuvanshi, D.K. Review of noise removal techniques in ECG signals. IET Signal Process. 2020, 14, 569–590. [Google Scholar] [CrossRef]
- Sramek, B. Status report on BoMed’s electrical bioimpedance. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, 4–7 November 1988; Volume 1, p. 51. [Google Scholar] [CrossRef]
- Pesti, K.; Metshein, M.; Annus, P.; Kõiv, H.; Min, M. Electrode Placement Strategies for the Measurement of Radial Artery Bioimpedance: Simulations and Experiments. IEEE Trans. Instrum. Meas. 2021, 70, 9500610. [Google Scholar] [CrossRef]
- Clifford, G.D.; Azuaje, F.; Mcsharry, P. ECG statistics, noise, artifacts, and missing data. Advanced methods and tools for ECG data analysis. Adv. Methods Tools ECG Data Anal. 2006, 6, 18. [Google Scholar]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Rev. Biomed. Eng. 2018, 11, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, J. Motion Artefact Suppression Method for Wearable ECGs. In Feature Engineering and Computational Intelligence in ECG Monitoring; Liu, C., Li, J., Eds.; Springer: Singapore, 2020; pp. 73–88. [Google Scholar] [CrossRef]
- Eerikäinen, L.M.; Vanschoren, J.; Rooijakkers, M.J.; Vullings, R.; Aarts, R.M. Decreasing the false alarm rate of arrhythmias in intensive care using a machine learning approach. In Proceedings of the 2015 Computing in Cardiology Conference (CinC), Nice, France, 6–9 September 2015; pp. 293–296. [Google Scholar] [CrossRef]
- Pandey, V.; Giri, V.K. High frequency noise removal from ECG using moving average filters. In Proceedings of the 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), Sultanpur, India, 11–12 March 2016; pp. 191–195. [Google Scholar] [CrossRef]
- Hargittai, S. Savitzky-Golay least-squares polynomial filters in ECG signal processing. In Proceedings of the Computers in Cardiology, Lyon, France, 25–28 September 2005; pp. 763–766. [Google Scholar] [CrossRef]
- Haddadi, R.; Abdelmounim, E.; El Hanine, M.; Belaguid, A. Discrete Wavelet Transform based algorithm for recognition of QRS complexes. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 375–379. [Google Scholar] [CrossRef] [Green Version]
- Sameni, R.; Shamsollahi, M.B.; Jutten, C.; Clifford, G.D. A Nonlinear Bayesian Filtering Framework for ECG Denoising. IEEE Trans. Biomed. Eng. 2007, 54, 2172–2185. [Google Scholar] [CrossRef] [Green Version]
- Orphanidou, C.; Bonnici, T.; Charlton, P.; Clifton, D.; Vallance, D.; Tarassenko, L. Signal-Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE J. Biomed. Health Inform. 2015, 19, 832–838. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Cai, Z.; Zhao, L.; Liu, C. Deep Learning-Based Signal Quality Assessment for Wearable ECGs. IEEE Instrum. Meas. Mag. 2022, 25, 41–52. [Google Scholar] [CrossRef]
- Daluwatte, C.; Johannesen, L.; Galeotti, L.; Vicente, J.; Strauss, D.G.; Scully, C.G. Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs. Physiol. Meas. 2016, 37, 1370–1382. [Google Scholar] [CrossRef]
- Keskes, N.; Fakhfakh, S.; Kanoun, O.; Derbel, N. Representativeness consideration in the selection of classification algorithms for the ECG signal quality assessment. Biomed. Signal Process. Control. 2022, 76, 103686. [Google Scholar] [CrossRef]
- Johannesen, L. Assessment of ECG quality on an Android platform. In Proceedings of the 2011 Computing in Cardiology, Hangzhou, China, 18–21 September 2011; pp. 433–436. [Google Scholar]
- Hayn, D.; Jammerbund, B.; Schreier, G. QRS detection based ECG quality assessment. Physiol. Meas. 2012, 33, 1449. [Google Scholar] [CrossRef]
- Shi, Y.; Han, N.; Li, P.; Yang, Z.; Yuan, Q.; Du, Y.; Lan, K.; Zheng, J.; Cao, D.; Zhang, Z. Robust Assessment of ECG Signal Quality for Wearable Devices. In Proceedings of the 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China, 10–13 June 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Palmieri, F.; Gomis, P.; Ferreira, D.; Ruiz, J.E.; Bergasa, B.; Martín-Yebra, A.; Bukhari, H.A.; Pueyo, E.; Martínez, J.P.; Ramírez, J.; et al. Monitoring blood potassium concentration in hemodialysis patients by quantifying T-wave morphology dynamics. Sci. Rep. 2021, 11, 3883. [Google Scholar] [CrossRef] [PubMed]
- Pessah, M.A.; Huhtala, H.; Kosonen, P.; Eskola, M.; Pérez-Riera, A.R.; Nikus, K.; Rankinen, J. Early ischemic ST-segment and T-wave changes during balloon angioplasty. J. Electrocardiol. 2022, 73, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hanna, E.B.; Glancy, D.L. ST-segment depression and T-wave inversion: Classification, differential diagnosis, and caveats. Clevel. Clin. J. Med. 2011, 78, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Mealor, A.E.; Akhtar, Y.; Ragosta, M. ECG Tools. In Electrocardiogram in Clinical Medicine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Chapter 6; pp. 97–105. [Google Scholar] [CrossRef]
- Helfenbein, E.D.; Zhou, S.H.; Lindauer, J.M.; Field, D.Q.; Gregg, R.E.; Wang, J.J.; Kresge, S.S.; Michaud, F.P. An algorithm for continuous real-time QT interval monitoring. J. Electrocardiol. 2006, 39, S123–S127. [Google Scholar] [CrossRef]
- Martinez, J.; Almeida, R.; Olmos, S.; Rocha, A.; Laguna, P. A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 2004, 51, 570–581. [Google Scholar] [CrossRef]
- Suárez-León, A.A.; Varon, C.; Willems, R.; Van Huffel, S.; Vázquez-Seisdedos, C.R. T-wave end detection using neural networks and Support Vector Machines. Comput. Biol. Med. 2018, 96, 116–127. [Google Scholar] [CrossRef]
- Zavantis, D.; Mastora, E.; Manis, G. Robust automatic detection of P wave and T wave in electrocardiogram. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Naseri, H.; Pourkhajeh, H.; Homaeinezhad, M. A unified procedure for detecting, quantifying, and validating electrocardiogram T-wave alternans. Med. Biol. Eng. Comput. 2013, 51, 1031–1042. [Google Scholar] [CrossRef]
- Ning, X.; Selesnick, I.W. ECG Enhancement and QRS Detection Based on Sparse Derivatives. Biomed. Signal Process. Control. 2013, 8, 713–723. [Google Scholar] [CrossRef]
- Zhang, Q.; Illanes Manriquez, A.; Medigue, C.; Papelier, Y.; Sorine, M. An Algorithm for Robust and Efficient Location of T-Wave Ends in Electrocardiograms. IEEE Trans. Biomed. Eng. 2006, 53, 2544–2552. [Google Scholar] [CrossRef]
- Shang, H.; Wei, S.; Liu, F.; Wei, D.; Chen, L.; Liu, C. An Improved Sliding Window Area Method for T Wave Detection. Comput. Math. Methods Med. 2019, 2019, 3130527. [Google Scholar] [CrossRef]
- Zurich Instruments. HF2 User Manual—ziControl Edition; Zurich Instruments: Zurich, Switzerland, 2019. [Google Scholar]
- Krivošei, A.; Min, M.; Annus, P.; Märtens, O.; Metshein, M.; Lotamõis, K.; Rist, M. Hankel Matrix Based Algorithm for Cardiac Pulse Wave Base and Peak Lines Correction. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Martinsen, O.G.; Grimnes, S. Bioimpedance and Bioelectricity Basics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Marquez, J.; Rempfler, M.; Seoane, F.; Lindecrantz, K. Textrode-enabled transthoracic electrical bioimpedance measurements—Towards wearable applications of impedance cardiography. J. Electr. Bioimpedance 2013, 4, 45–50. [Google Scholar] [CrossRef]
- Klaassen, E.H.; Dougherty, W.N.; Kimoto, R.C.; Narasimhan, R.; Sullivan, T.J.; Waydo, S.J.; Whitehurst, T.K.; Quijano, S.; Park-Shing Young, D.; Zeng, Z. Blood Pressure Monitoring Using Multifunctional Wrist-Worn Device. U.S. Patent 10,772,512, 15 September 2020. [Google Scholar]
EPC | ARwave (V) | ATwave (V) | ASwave (V) | TRRint (s) | RRRintmaxmin | HR | Quality ECG |
---|---|---|---|---|---|---|---|
TEPC-1 | 0.423 | 0.183 | 0.266 | 0.876 | 1.139 | 13 | 3 |
TEPC-2 | 0.685 | 0.169 | 0.237 | 0.877 | 1.159 | 12 | 3 |
TEPC-3 | 1.204 | 0.553 | 0.947 | 0.889 | 1.137 | 12 | 3 |
TEPC-4 | 0.461 | 0.182 | 0.213 | 0.919 | 4.174 | 21 | 2 |
TEPC-5 | 0.570 | 0.373 | 1.444 | 1.019 | 4.830 | 17 | 1 |
TEPC-6 | 1.137 | 0.607 | 0.967 | 1.297 | 1.818 | 12 | 2 |
TEPC-7 | 1.093 | 0.573 | 0.797 | 0.130 | 1.180 | 13 | 3 |
AEPC | 0.174 | 0.051 | 0.069 | 0.864 | 1.400 | 14 | 1 |
Standard | 0.665 | 0.246 | 0.368 | 0.889 | 1.149 | 12 | 3 |
Parameter | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
R peak width | 0.023 | 0.019 | 0.018 | 0.020 | 0.021 | 0.024 |
T peak width | 0.070 | 0.237 | 0.081 | 0.078 | 0.072 | 0.069 |
R peak area | 0.026 | 0.018 | 0.017 | 0.020 | 0.023 | 0.030 |
T peak area | 0.037 | 0.045 | 0.044 | 0.043 | 0.038 | 0.035 |
EPC | Quality ICG | Quality ECG |
---|---|---|
TEPC-1 | 3 | 3 |
TEPC-2 | 1 | 3 |
TEPC-3 | 1 | 3 |
TEPC-4 | 2 | 2 |
TEPC-5 | 1 | 1 |
TEPC-6 | 0 | 2 |
TEPC-7 | 2 | 3 |
AEPC | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metshein, M.; Krivošei, A.; Abdullayev, A.; Annus, P.; Märtens, O. Non-Standard Electrode Placement Strategies for ECG Signal Acquisition. Sensors 2022, 22, 9351. https://doi.org/10.3390/s22239351
Metshein M, Krivošei A, Abdullayev A, Annus P, Märtens O. Non-Standard Electrode Placement Strategies for ECG Signal Acquisition. Sensors. 2022; 22(23):9351. https://doi.org/10.3390/s22239351
Chicago/Turabian StyleMetshein, Margus, Andrei Krivošei, Anar Abdullayev, Paul Annus, and Olev Märtens. 2022. "Non-Standard Electrode Placement Strategies for ECG Signal Acquisition" Sensors 22, no. 23: 9351. https://doi.org/10.3390/s22239351
APA StyleMetshein, M., Krivošei, A., Abdullayev, A., Annus, P., & Märtens, O. (2022). Non-Standard Electrode Placement Strategies for ECG Signal Acquisition. Sensors, 22(23), 9351. https://doi.org/10.3390/s22239351