Non-Contact Monitoring of ECG in the Home Environment—Selecting Optimal Electrode Configuration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potential Distribution on the Thoracic Surface
2.2. Capacitive Electrode
2.3. Measurement System
2.4. Experimental Studies
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Paper | Electrode Localization Personalization | Rigid or Flexible Electrode | Is the Electrode on the Backrest? | Is the Long-Term Monitoring Shown? | Remarks |
---|---|---|---|---|---|
Lim et al., 2014 [4] | No | Rigid | No | Considered, not shown | |
Lim et al., 2006 [9] | Yes | Rigid | Yes | Not shown | |
Hou et al., 2018 [7] | Yes | Rigid | Yes | 3 min | Multi-lead |
Leicht et al., 2019 [8] | No | Rigid | Yes | 20 min | Multi-lead |
Wang et al., 2022 [12] | No | Rigid | No | 1 min | |
Yang et al., 2016 [15] | No | Rigid | No, fixed | Not clear, short recordings shown in the paper | Galvanic-coupled DRL |
Tanaka et al., 2016 [16] | Not mentioned | Semi-rigid (copper foil) | Not reported | Not mentioned | |
Castro et al., 2016 [19] | Yes | Rigid | No, fixed | Mentioned, not shown |
References
- Lewandowska, M.; Rumiński, J.; Kocejko, T.; Nowak, J. Measuring pulse rate with a webcam—A non-contact method for evaluating cardiac activity. In Proceedings of the 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 18–21 September 2011; pp. 405–410. [Google Scholar]
- von Rosenberg, W.; Chanwimalueang, T.; Goverdovsky, V.; Peters, N.; Papavassiliou, C.; Mandic, D. Hearables: Feasibility of recording cardiac rhythms from head and in-ear locations. R. Soc. Open Sci. 2017, 4, 171214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ensastiga, S.A.L.; Rodríguez-Reséndiz, J.; Estévez-Bén, A.A. Speed controller-based fuzzy logic for a biosignal-feedbacked cycloergometer. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Lee, J.; Lee, S.M.; Lee, H.; Park, K. Capacitive Measurement of ECG for Ubiquitous Healthcare. Ann. Biomed. Eng. 2014, 42, 2218–2227. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.; Ruminski, J.; Bujnowski, A. Multimodal platform for continuous monitoring of elderly and disabled at home. In Proceedings of the Federated Conference on Computer Science and Information Systems, Szczecin, Poland, 18–21 September 2011; pp. 393–400. [Google Scholar]
- Lim, Y.G.; Chung, G.S.; Park, K.S. Capacitive driven-right-leg grounding in Indirect-contact ECG measurement. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1250–1253. [Google Scholar] [CrossRef]
- Hou, Z.; Xiang, J.; Dong, Y.; Xue, X.; Xiong, H.; Yang, B. Capturing Electrocardiogram Signals from Chairs by Multiple Capacitively Coupled Unipolar Electrodes. Sensors 2018, 18, 2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leicht, L.; Skobel, E.; Knackstedt, C.; Mathissen, M.; Sitter, A.; Wartzek, T.; Möhler, W.; Reith, S.; Leonhardt, S.; Teichmann, D. Capacitive ECG Monitoring in Cardiac Patients During Simulated Driving. IEEE Trans. Biomed. Eng. 2019, 66, 749–758. [Google Scholar] [CrossRef]
- Lim, Y.G.; Kim, K.K.; Park, S. ECG measurement on a chair without conductive contact. IEEE Trans. Biomed. Eng. 2006, 53, 956–959. [Google Scholar] [CrossRef]
- Peng, G.; Nourani, M.; Harvey, J.; Dave, H. Personalized Feature Selection for Wearable EEG Monitoring Platform. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020; pp. 380–386. [Google Scholar] [CrossRef]
- Bujnowski, A.; Kaczmarek, M.; Osiński, K.; Gońka, M.; Wtorek, J. Capacitively coupled ECG measurements—A CMRR circuit improvement. In Proceedings of the IFMBE Proceedings, Prague, Czech Republic, 3–8 June 2018; pp. 1109–1112. [Google Scholar] [CrossRef]
- Wang, K.; Yao, Y.; Lin, R.; Cheng, A.; Xu, Y.; Xu, L. A Capacitive Electrocardiography System With Dedicated Noise-Cancellation Algorithms for Morphological Analysis. IEEE Trans. Biomed. Eng. 2022, 1–9. [Google Scholar] [CrossRef]
- Asl, S.N.; Oehler, M.; Schilling, M. Noise Model of Capacitive and Textile Capacitive Noncontact Electrodes for Bioelectric Applications. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 851–859. [Google Scholar] [CrossRef]
- Bujnowski, A.; Kaczmarek, M.; Wtorek, J.; Osinski, K.; Strupinska, D. Estimation of electrode contact in capacitive ECG measurement. In Proceedings of the 2019 12th International Conference on Human System Interaction (HSI), Richmond, VI, USA, 25–27 June 2019; pp. 132–136. [Google Scholar] [CrossRef]
- Yang, B.; Yu, C.; Dong, Y. Capacitively Coupled Electrocardiogram Measuring System and Noise Reduction by Singular Spectrum Analysis. IEEE Sens. J. 2016, 16, 3802–3810. [Google Scholar] [CrossRef]
- Tanaka, Y.; Izumi, S.; Kawamoto, Y.; Kawaguchi, H.; Yoshimoto, M. Adaptive noise cancellation method for capacitively coupled ecg sensor using single insulated electrode. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016; pp. 296–299. [Google Scholar]
- Lee, J.; Lee, S.J.; Choi, M.; Seo, M.; Kim, S.W. QRS detection method based on fully convolutional networks for capacitive electrocardiogram. Expert Syst. Appl. 2019, 134, 66–78. [Google Scholar] [CrossRef]
- Serteyn, A.; Vullings, R.; Meftah, M.; Bergmans, J.W.M. Motion Artifacts in Capacitive ECG Measurements: Reducing the Combined Effect of DC Voltages and Capacitance Changes Using an Injection Signal. IEEE Trans. Biomed. Eng. 2015, 62, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, I.D.; Morariu, R.; Torfs, T.; Van Hoof, C.; Puers, R. Robust wireless capacitive ECG system with adaptive signal quality and motion artifact reduction. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.W.; Zhang, H.; Lin, S.F. Influence of Capacitive Coupling on High-Fidelity Non-Contact ECG Measurement. IEEE Sens. J. 2020, 20, 9265–9273. [Google Scholar] [CrossRef]
- Przystup, P.; Poliński, A.; Wtorek, J. QRS Morphology-Based EDR Signal—Factors Determining its Properties. IEEE Access 2022, 10, 34665–34676. [Google Scholar] [CrossRef]
- Przystup, P.; Poliński, A.; Bujnowski, A.; Kocejko, T.; Wtorek, J. A body position influence on ECG derived respiration. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017; pp. 3513–3516. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, S.R.; Choi, E.K.; Ahn, H.J.; Song, H.S.; Lee, Y.S.; Oh, S. Validation of Adhesive Single-Lead ECG Device Compared with Holter Monitoring among Non-Atrial Fibrillation Patients. Sensors 2021, 21, 3122. [Google Scholar] [CrossRef]
- Francis, J. ECG Monitoring Leads and Special Leads. Indian Pacing Electrophysiol. J. 2016, 16, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Gulrajani, R. The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag. 1998, 17, 84–101. [Google Scholar] [CrossRef]
- Rudy, Y. The forward problem of electrocardiography revisited. Circ Arrhythm Electrophysiol. 2015, 8, 526–528. [Google Scholar] [CrossRef] [Green Version]
- Horáček, B.M. Lead Theory. In Comprehensive Electrocardiology; Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J., Eds.; Springer: London, UK, 2010; pp. 347–374. [Google Scholar] [CrossRef]
- Gulrajani, R.M. The Forward Problem of Electrocardiography: Theoretical Underpinnings and Applications. In Modeling and Imaging of Bioelectrical Activity: Principles and Applications; He, B., Ed.; Springer: Boston, MA, USA, 2005; pp. 43–79. [Google Scholar] [CrossRef]
- Heijden, F. Image Based Measurement Systems: Object Recognition and Parameter Estimation; Wiley John & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Wtorek, J. Application of Impedance Rhoegraphy Methods in Evaluation of Circulation. Ph.D. Thesis, Gdansk University of Technology, Gdańsk, Poland, 1985. (In Polish). [Google Scholar]
- Van Dijk, J.P.; Lowery, M.M.; Lapatki, B.G.; Stegeman, D.F. Evidence of potential averaging over the finite surface of bioelectric surface electrode. Ann. Biomed. Eng. 2009, 37, 1141–1151. [Google Scholar] [CrossRef] [Green Version]
- Sedghamiz, H. Matlab Implementation of Pan Tompkins ECG QRS Detector. 2014. Available online: https://www.researchgate.net/publication/313673153_Matlab_Implementation_of_Pan_Tompkins_ECG_QRS_detect (accessed on 30 September 2019). [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 5.2.0 Manual: A High-Level Interactive Language for Numerical Computations. 2020. Available online: https://www.gnu.org/software/octave/doc/v5.2.0/ (accessed on 17 September 2022).
- Chakraborty, M.; Das, S. Determination of Signal to Noise Ratio of Electrocardiograms Filtered by Band Pass and Savitzky-Golay Filters. Procedia Technol. 2012, 4, 830–833. [Google Scholar] [CrossRef]
- Redmond, S.J.; Lovell, N.H.; Basilakis, J.; Celler, B.G. ECG quality measures in telecare monitoring. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2869–2872. [Google Scholar] [CrossRef]
- Nelson, C.V.; Hodgkin, B.C. Dipole moment of the hearts of various species. Ann. Biomed. Eng. 1975, 3, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, O.G.; Grimnes, S. Bioimpedance and Bioelectricity Basics, 3rd ed.; Academic Press: Oxford, UK, 2015; pp. 87–124. [Google Scholar] [CrossRef]
Actual No. QRS | TP | FN | FP | TE | SE | PPV |
---|---|---|---|---|---|---|
14,087 | 13,948 | 139 | 259 | 398 | 99.01% | 97.22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujnowski, A.; Osiński, K.; Przystup, P.; Wtorek, J. Non-Contact Monitoring of ECG in the Home Environment—Selecting Optimal Electrode Configuration. Sensors 2022, 22, 9475. https://doi.org/10.3390/s22239475
Bujnowski A, Osiński K, Przystup P, Wtorek J. Non-Contact Monitoring of ECG in the Home Environment—Selecting Optimal Electrode Configuration. Sensors. 2022; 22(23):9475. https://doi.org/10.3390/s22239475
Chicago/Turabian StyleBujnowski, Adam, Kamil Osiński, Piotr Przystup, and Jerzy Wtorek. 2022. "Non-Contact Monitoring of ECG in the Home Environment—Selecting Optimal Electrode Configuration" Sensors 22, no. 23: 9475. https://doi.org/10.3390/s22239475
APA StyleBujnowski, A., Osiński, K., Przystup, P., & Wtorek, J. (2022). Non-Contact Monitoring of ECG in the Home Environment—Selecting Optimal Electrode Configuration. Sensors, 22(23), 9475. https://doi.org/10.3390/s22239475