Comparison of Amplitude Measurements on Borehole Geophone and DAS Data
Abstract
:1. Introduction
2. Test Site: Curtin GeoLab Research Facility
3. Method
4. Data Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evenden, B.S.; Stone, D.R. Instrument Performance and Testing. Lubrecht & Cramer, Limited: New York, NY, USA, 1971; Volume 2. [Google Scholar]
- Parker, T.; Gillies, A.; Shatalin, S.; Farhadiroushan, M. The intelligent distributed acoustic sensing. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9157, 525–528. [Google Scholar] [CrossRef]
- Galperin, E.I.; White, J.E. Vertical Seismic Profiling; Society of Exploration Geophysicists: Tulsa, Okla, 1974. [Google Scholar]
- Hardage, B.A. Vertical Seismic Profiling; Geophysical Press: London, UK; Worldwide Distributors, Expro Science Publications: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Mateeva, A.; Lopez, J.; Potters, H.; Mestayer, J.; Cox, B.; Kiyashchenko, D.; Wills, P.; Grandi, S.; Hornman, K.; Kuvshinov, B.; et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys. Prospect. 2014, 62, 679–692. [Google Scholar] [CrossRef]
- Correa, J.; Egorov, A.; Tertyshnikov, K.; Bona, A.; Pevzner, R.; Dean, T.; Freifeld, B.; Marshall, S. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets—A CO2CRC Otway Project data example. Lead. Edge 2017, 36, a991–a994. [Google Scholar] [CrossRef] [Green Version]
- Sidenko, E.; Pevzner, R.; Bona, A.; Tertyshnikov, K. Experimental Comparison of Directivity Patterns of Straight and Helically Wound DAS Cables. In Proceedings of the 82nd EAGE Annual Conference & Exhibition, Amsterdam, The Netherlands, 18–21 October 2021; pp. 1–5. [Google Scholar]
- Wang, H.F.; Zeng, X.; Miller, D.E.; Fratta, D.; Feigl, K.L.; Thurber, C.H.; Mellors, R.J. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophys. J. Int. 2018, 213, 2020–2036. [Google Scholar] [CrossRef] [Green Version]
- Mestayer, J.; Cox, B.; Wills, P.; Kiyashchenko, D.; Lopez, J.; Costello, M.; Bourne, S.; Ugueto, G.; Lupton, R.; Solano, G.; et al. Field trials of distributed acoustic sensing for geophysical monitoring. In SEG Technical Program Expanded Abstracts 2011; Society of Exploration Geophysicists: Houston, TX, USA, 2011; pp. 4253–4257. [Google Scholar]
- Barberan, C.; Allanic, C.; Avila, D.; Hy-Billiot, J.; Hartog, A.; Frignet, B.; Lees, G. Multi-offset Seismic Acquisition Using Optical Fiber Behind Tubing. In Proceedings of the 74th EAGE Conference and Exhibition Incorporating EUROPEC 2012, Copenhagen, Denmark, 4–7 June 2012. [Google Scholar] [CrossRef]
- Mateeva, A.; Mestayer, J.; Cox, B.; Kiyashchenko, D.; Wills, P.; Lopez, J.; Grandi, S.; Hornman, K.; Lumens, P.; Franzen, A.; et al. Advances in Distributed Acoustic Sensing (DAS) for VSP. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Houston, TX, USA, 2012; pp. 1–5. [Google Scholar]
- Daley, T.; Freifeld, B.; Ajo-Franklin, J.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashikar, S.; Miller, D.; Goetz, J.; Henninges, J.; et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead. Edge 2013, 32, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Dean, T.; Cuny, T.; Hartog, A.H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing. Geophys. Prospect. 2017, 65, 184–193. [Google Scholar] [CrossRef]
- Daley, T.M.; Miller, D.E.; Dodds, K.; Cook, P.; Freifeld, B.M. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prospect. 2016, 64, 1318–1334. [Google Scholar] [CrossRef] [Green Version]
- Bona, A.; Dean, T.; Correa, J.; Pevzner, R.; Tertyshnikov, K.V.; Van Zaanen, L. Amplitude and Phase Response of DAS Receivers. In Proceedings of the 79th EAGE Conference and Exhibition 2017, Paris, France, 12–15 June 2017; Volume 2017, pp. 1–5. [Google Scholar] [CrossRef]
- Isaenkov, R.; Glubokovskikh, S.; Tertyshnikov, K.; Pevzner, R.; Bona, A. Effect of Rocks Stiffness on Observed DAS VSP Amplitudes. In Proceedings of the EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, Kuala Lumpur, Malaysia, 9–11 November 2020; pp. 1–5. [Google Scholar]
- Pevzner, R.; Bona, A.; Correa, J.; Tertyshnikov, K.; Palmer, G.; Valishin, O. Optimising DAS VSP data acquisition parameters: Theory and experiments at Curtin training well facility. In Proceedings of the 80th EAGE Conference and Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018; p. WS08. [Google Scholar]
- Sidenko, E.; Bona, A.; Pevzner, R.; Issa, N.; Tertyshnikov, K. Influence of Interrogators’ Design on DAS Directional Sensitivity. In Proceedings of the EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, Kuala Lumpur, Malaysia, 9–11 November 2020; pp. 1–5. [Google Scholar]
- Lawton, D.C.; Osadetz, K.G.; Saeedfar, A. CCS Monitoring Technology Innovation at the CaMI Field Research Station, Alberta, Canada. In Proceedings of the EAGE/SEG Research Workshop 2017, Trondheim, Norway, 28–31 August 2017. [Google Scholar] [CrossRef]
- Correa, J.; Freifeld, B.; Robertson, M.; Pevzner, R.; Bona, A.; Popik, D.; Tertyshnikov, K.; Daley, T. 3D Vertical Seismic Profiling Acquired Using Fibre-Optic Sensing Das—Results From The CO2CRC Otway Project. ASEG Ext. Abstr. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tertyshnikov, K.; Pevzner, R.; Freifeld, B.; Ricard, L.; Avijegon, A. DAS VSP for Characterisation and Monitoring of the CO2 Shallow Release Site: CSIRO In-Situ Laboratory Case Study. In Proceedings of the Fifth EAGE Workshop on Borehole Geophysics, The Hauge, The Netherlands, 18 November 2019; pp. 1–5. [Google Scholar]
- Sun, Y.; Xue, Z.; Hashimoto, T.; Lei, X.; Zhang, Y. Distributed Fiber Optic Sensing System for Well-Based Monitoring Water Injection Tests—A Geomechanical Responses Perspective. Water Resour. Res. 2020, 56, e2019WR024794. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-Optic Network Observations of Earthquake Wavefields. Geophys. Res. Lett. 2017, 44, 11792–11799. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 2019, 366, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Rodriguez Tribaldos, V.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Sci. Rep. 2019, 9, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldawood, A.; Alfataierge, E.; Bakulin, A. Introducing a New DAS Test Facility for Evaluating Emerging DAS Technologies. In Proceedings of the First EAGE Workshop on Fibre Optic Sensing, Amsterdam, The Netherlands, 9–11 March 2020; Volume 2020, pp. 1–5. [Google Scholar] [CrossRef]
- Wuestefeld, A.; Stokkan, S.; Baird, A.; Oye, V. NOR-FROST: A near-surface test site for fibre optic sensing. In Proceedings of the EAGE GeoTech 2021 Second EAGE Workshop on Distributed Fibre Optic Sensing, Online, 1–2 March 2021; Volume 2021, pp. 1–4. [Google Scholar] [CrossRef]
- Correa, J.; Dean, T.; Van Zaanen, L.; Tertyshnikov, K.; Pevzner, R.; Bona, A. A Comparison of DAS and Geophones for VSP Acquisition At a Dedicated Field Laboratory. In Proceedings of the 79th EAGE Conference & Exhibition 2017, Paris, France, 12–15 June 2017; pp. 1–5. [Google Scholar]
- Shulakova, V.; Tertyshnikov, K.; Pevzner, R.; Kovalyshen, Y.; Gurevich, B. Ambient seismic noise in an urban environment: Case study using downhole distributed acoustic sensors at the Curtin University campus in Perth, Western Australia. Explor. Geophys. 2022, 53, 620–633. [Google Scholar] [CrossRef]
- Bakku, S.K. Fracture Characterization from Seismic Measurements in a Borehole. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015. [Google Scholar]
- Sallas, J.J. Seismic vibrator control and the downgoing P-wave. Geophysics 1984, 49, 732–740. [Google Scholar] [CrossRef]
VSP Survey Information | |
---|---|
Geophone Recording System | WaveLab II |
Software acquisition | WaveControl |
Logging cable | 2500 m 4 conductor cable + electric winch |
Geophone Information | |
Downhole tool | Sercel 3C SlimWave with ten downhole shuttles Sensor: Omni 2400 15 Hz |
Receiver step | 10 m |
Sweep + listen time | 24 s + 4 s |
Sample rate | 1 ms |
Sweep per receiver | 1 |
DAS Information | |
Interrogator unit | Silixa iDAS v2 |
Fibre-optic cable | Single-mode straight loose tube cable |
Sampling interval raw/binned | 1 m/5 m |
Pulse length | 5 m |
Gauge length | 10 m |
Pulse Repetition Frequency | 16 kHz (downsampled to 1 kHz) |
Sample rate | 1 ms (decimated to 2 ms for analysis) |
Sweep per receiver | 9 |
Source Information | |
Source type | 26,000 lb UniVib |
Source sweep | 8–150 Hz linear sweep |
Sweep duration | 24 s |
Tapers | 0.5 s |
Force | 70% |
Source control | Pelton VibPro |
Number of source locations | 48 |
Step | Converted Geophone | DAS |
---|---|---|
1 | Read raw SEG-Y | Read relative strain-rate iDAS data |
2 | Apply descaling factor to get the voltage in millivolts | Apply descaling factor to get absolute strain rate |
3 | Apply geophone factor to get particle displacement rate in m/s | Assigning geometry |
4 | Assigning geometry | |
5 | Differentiate over the GL interval |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulic, S.; Sidenko, E.; Yurikov, A.; Tertyshnikov, K.; Bona, A.; Pevzner, R. Comparison of Amplitude Measurements on Borehole Geophone and DAS Data. Sensors 2022, 22, 9510. https://doi.org/10.3390/s22239510
Zulic S, Sidenko E, Yurikov A, Tertyshnikov K, Bona A, Pevzner R. Comparison of Amplitude Measurements on Borehole Geophone and DAS Data. Sensors. 2022; 22(23):9510. https://doi.org/10.3390/s22239510
Chicago/Turabian StyleZulic, Sana, Evgenii Sidenko, Alexey Yurikov, Konstantin Tertyshnikov, Andrej Bona, and Roman Pevzner. 2022. "Comparison of Amplitude Measurements on Borehole Geophone and DAS Data" Sensors 22, no. 23: 9510. https://doi.org/10.3390/s22239510
APA StyleZulic, S., Sidenko, E., Yurikov, A., Tertyshnikov, K., Bona, A., & Pevzner, R. (2022). Comparison of Amplitude Measurements on Borehole Geophone and DAS Data. Sensors, 22(23), 9510. https://doi.org/10.3390/s22239510