The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment
Abstract
:1. Introduction
2. Materials and Methods
- The composite wires were obtained by the electrolytic deposition of Fe20Co6Ni74 ferromagnetic alloy (coating) on Cu98Be2 wire (core). The thickness of the deposited layer was 1 µm with a total wire radius of 52.5 µm. The coating thickness was determined by both deposition time and scanning electron microscopy performed on Hitachi TM3000. Magnetoimpedance measurements were performed on the 30 mm-long samples. Here, it should be noted that the electrolytic technology for obtaining the magnetic layer causes the formation of circular magnetic anisotropy in the initial samples [18]. In this case, the specific parameters of the magnetic anisotropy of the samples can have a certain dispersion. Thus, the initial wires were subjected to thermomagnetic treatment for 1 h at a temperature of 600 K in the axial magnetic field with a strength of 12 kA/m to induce the axial magnetic anisotropy with the lowest possible dispersion.
- Amorphous Co66Fe4Nb2.5Si12.5B15 wires with a radius of 90 µm were prepared by the in-rotating-water quenching technique [12]. The structural state of these wires was discussed by us earlier [28]. Moreover, the studies of other authors indicate the amorphous state of wires similar in composition and geometry [34].
2.1. Computer Simulation
- When modeling the composite wire, n was equal to 2. In this case, r1 was equal to 51.5 µm, which corresponded to the core radius. The value of r2 was equal to the wire radius, 52.5 µm. Thus, the electrodeposited coating was modeled by the area enclosed between r1 and r2. The electrical conductivity of the core, σ1, varied from 15 to 20 MS/m with a step of 0.2 MS/m, and its magnetic permeability was taken as 1. The specific electrical conductivity of the coating, σ2, varied in the range from 0.5 to 4 MS/m with a step of 0.2 MS/m, and the magnetic permeability of this region, µ2, varied from 1 to 1500 with a step of 1. All these values varied independently. In this way, an array of the dependences of the reduced impedance on the frequency of the alternating current Z(f)/RDC was obtained, corresponding to various combinations of values of σ1, σ2, and µ2.
- When modeling amorphous CoFeNbSiB wire, the cases with n equal to 2 and 3 were considered (see Table 1). The total radius of the amorphous wire model was rn = 90 µm. The value of the r1 varied from 70 to 85 m. For n = 3, three variants with r2 equal to 87, 88, and 89 µm were considered. The electrical conductivity of all regions, σ, was taken equal to 0.87 MS/m. The magnetic permeability of each region µi, regardless of the permeabilities of other regions, varied from 1 to 15,000 with a step of 10 to 50. As a result, an array of the Z(f)/RDC dependences corresponding to the various combinations of magnetic permeabilities µi was obtained.
2.2. Implementation of the Method of the Magnetoimpedance Tomography
3. Results and Discussion
3.1. Composite Wires
3.2. Amorphous CoFeNbSiB Wires
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beach, R.S.; Berkowitz, A.E. Giant Magnetic Field Dependent Impedance of Amorphous FeCoSiB Wire. Appl. Phys. Lett. 1994, 64, 3652–3654. [Google Scholar] [CrossRef]
- Nakai, T. Sensitivity of Thin Film Magnetoimpedance Sensor in 0.3 T Surface Normal Magnetic Field. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 1230–1235. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Svalov, A.V.; Kurlyandskaya, G.V. Influence of the Parameters of Permalloy-Based Multilayer Film Structures on the Sensitivity of Magnetic Impedance Effect. Phys. Met. Metallogr. 2021, 122, 223–229. [Google Scholar] [CrossRef]
- Bukreev, D.A.; Derevyanko, M.S.; Golubev, D.N.; Moiseev, A.A.; Semirov, A.V. The Magnetic Prehystory and Stress-Impedance Effect in Amorphous CoFeNbSiB Wires. Phys. Met. Metallogr. 2022, 123, 721–725. [Google Scholar] [CrossRef]
- Popov, V.V.; Buznikov, N.A. Modeling the Giant Magnetoimpedance Effect in Amorphous Microwires with Induced Magnetic Anisotropy. Phys. Met. Metallogr. 2020, 121, 1033–1038. [Google Scholar] [CrossRef]
- Beach, R.S.; Smith, N.; Platt, C.L.; Jeffers, F.; Berkowitz, A.E. Magneto-impedance Effect in NiFe Plated Wire. Appl. Phys. Lett. 1996, 68, 2753–2755. [Google Scholar] [CrossRef]
- Tandon, P.; Mishra, A.C. The Effect of Magnetic Field Orientation on the Magnetoimpedance of Electroplated NiFeCo/Cu Wire. J. Mater. Sci. Mater. Electron. 2022, 33, 18311–18326. [Google Scholar] [CrossRef]
- Wang, K.; Tajima, S.; Asano, Y.; Okuda, Y.; Hamada, N.; Cai, C.; Uchiyama, T. Detection of P300 Brain Waves Using a MagnetoImpedance Sensor. Int. J. Smart Sens. Intell. Syst. 2020, 7, 1. [Google Scholar]
- Chen, J.; Li, J.; Li, Y.; Chen, Y.; Xu, L. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology. Sensors 2018, 18, 732. [Google Scholar] [CrossRef] [Green Version]
- Fodil, K.; Denoual, M.; Dolabdjian, C.; Treizebre, A.; Senez, V. In-Flow Detection of Ultra-Small Magnetic Particles by an Integrated Giant Magnetic Impedance Sensor. Appl. Phys. Lett. 2016, 108, 173701. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon Press: Oxford, UK, 1960. [Google Scholar]
- Masumoto, T.; Ohnaka, I.; Inoue, A.; Hagiwara, M. Production of Pd-Cu-Si Amorphous Wires by Melt Spinning Method Using Rotating Water. Scr. Metall. 1981, 15, 293–296. [Google Scholar] [CrossRef]
- Vázquez, M.; Hernando, A. A Soft Magnetic Wire for Sensor Applications. J. Phys. D Appl. Phys. 1996, 29, 939–949. [Google Scholar] [CrossRef]
- Atalay, F.E.; Kaya, H.; Atalay, S. Unusual Grain Growth in Electrodeposited CoNiFe/Cu Wires and Their Magnetoimpedance Properties. Mater. Sci. Eng. B 2006, 131, 242–247. [Google Scholar] [CrossRef]
- Atalay, F.E.; Atalay, S. Giant Magnetoimpedance Effect in NiFe/Cu Plated Wire with Various Plating Thicknesses. J. Alloys Compd. 2005, 392, 322–328. [Google Scholar] [CrossRef]
- Usov, N.A.; Antonov, A.S.; Lagar’kov, A.N.; Granovsky, A.B. GMI Spectra of Amorphous Wires with Different Types of Magnetic Anisotropy in the Core and the Shell Regions. J. Magn. Magn. Mater. 1999, 203, 108–110. [Google Scholar] [CrossRef]
- Chen, D.-X.; Pascual, L.; Fraga, E.; Vazquez, M.; Hernando, A. Magnetic and Transport Eddy-Current Anomalies in Cylinders with Core-and-Shell Regions. J. Magn. Magn. Mater. 1999, 202, 385–396. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Antonov, A.S.; Rakhmanov, A.A. Effect of Torsional Stresses on the Magnetoimpedance of Amorphous Wires with Negative Magnetostriction. Techn. Phys. 2009, 54, 229–234. [Google Scholar] [CrossRef]
- Usov, N.; Antonov, A.; Granovsky, A. Theory of Giant Magneto-Impedance Effect in Composite Amorphous Wire. J. Magn. Magn. Mater. 1997, 171, 64–68. [Google Scholar] [CrossRef]
- Gromov, A.; Korenivski, V. Electromagnetic Analysis of Layered Magnetic/Conductor Structures. J. Phys. D Appl. Phys. 2000, 33, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Kurlyandskaya, G.V.; Bebenin, N.G.; Vas’kovsky, V.O. Giant Magnetic Impedance of Wires with a Thin Magnetic Coating. Phys. Met. Metallogr. 2011, 111, 133–154. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Barandiarán, J.M.; Gutiérrez, J.; García, D.; Vázquez, M.; Vas’kovskiy, V.O. Magnetoimpedance Effect in CoFeNi Plated Wire with Ac Field Annealing Destabilized Domain Structure. J. Appl. Phys. 1999, 85, 5438–5440. [Google Scholar] [CrossRef]
- Antonov, A.S.; Buznikov, N.A.; Prokoshin, A.F.; Rakhmanov, A.L.; Iakubov, I.T.; Yakunin, A.M. Nonlinear Magnetization Reversal in Copper-Permalloy Composite Wires Induced by a High-Frequency Current. Techn. Phys. Lett. 2001, 27, 313–315. [Google Scholar] [CrossRef]
- Eggers, T.; Thiabgoh, O.; Jiang, S.D.; Shen, H.X.; Liu, J.S.; Sun, J.F.; Srikanth, H.; Phan, M.H. Tailoring Circular Magnetic Domain Structure and High Frequency Magneto-Impedance of Melt-Extracted Co 69.25 Fe 4.25 Si 13 B 13.5 Microwires through Nb Doping. AIP Adv. 2017, 7, 056643. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Liu, J.; Wang, H.; Xing, D.; Chen, D.; Liu, Y.; Sun, J. Optimization of Mechanical and Giant Magneto-Impedance (GMI) Properties of Melt-Extracted Co-Rich Amorphous Microwires. Phys. Status Solidi A Appl. Mater. Sci. 2014, 211, 1668–1673. [Google Scholar] [CrossRef]
- Sarkar, P.; Basu Mallick, A.; Roy, R.K.; Panda, A.K.; Mitra, A. Structural and Giant Magneto-Impedance Properties of Cr-Incorporated Co–Fe–Si–B Amorphous Microwires. J. Magn. Magn. Mater. 2012, 324, 1551–1556. [Google Scholar] [CrossRef]
- Knobel, M.; Sánchez, M.L.; Gómez-Polo, C.; Marín, P.; Vázquez, M.; Hernando, A. Giant Magneto-impedance Effect in Nanostructured Magnetic Wires. J. Appl. Phys. 1996, 79, 1646–1654. [Google Scholar] [CrossRef]
- Semirov, A.V.; Gavrilyuk, A.A.; Kudryavtsev, V.O.; Moiseev, A.A.; Bukreev, D.A.; Semenov, A.L.; Ushchapovskaya, Z.F. The Effect of Annealing on Impedance Properties of Elastically Deformed Soft Magnetic Wires. Russ. J. Nondestruct. Test. 2007, 43, 639–642. [Google Scholar] [CrossRef]
- Alekhina, I.; Kolesnikova, V.; Rodionov, V.; Andreev, N.; Panina, L.; Rodionova, V.; Perov, N. An Indirect Method of Micromagnetic Structure Estimation in Microwires. Nanomaterials 2021, 11, 274. [Google Scholar] [CrossRef]
- Volchkov, S.O.; Pasynkova, A.A.; Derevyanko, M.S.; Bukreev, D.A.; Kozlov, N.V.; Svalov, A.V.; Semirov, A.V. Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling. Sensors 2021, 21, 6728. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, N.V.; Chlenova, A.A.; Volchkov, S.O.; Kurlyandskaya, G.V. The Study of Magnetic Permeability and Magnetoimpedance: Effect of Ferromagnetic Alloy Characteristics. AIP Conf. Proc. 2020, 2313, 030050. [Google Scholar]
- Yang, Z.; Chlenova, A.A.; Golubeva, E.V.; Volchkov, S.O.; Guo, P.; Shcherbinin, S.V.; Kurlyandskaya, G.V. Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application. Sensors 2019, 19, 2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnikov, G.Y.; Lepalovskij, V.N.; Svalov, A.V.; Safronov, A.P.; Kurlyandskaya, G.V. Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel. Sensors 2021, 21, 3621. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, H.; Barariu, F.; Neagu, M.; Vinai, F.; Ferrara, E.; Marinescu, C.S. Effect of Mo and Nb Additions on the Magnetic Properties of CoFeSiB Amorphous Wires. J. Non Cryst. Solids 1999, 250–252, 762–765. [Google Scholar] [CrossRef]
- Bukreev, D.A.; Derevyanko, M.S.; Moiseev, A.A.; Semirov, A.V.; Savin, P.A.; Kurlyandskaya, G.V. Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures. Materials 2020, 13, 3216. [Google Scholar] [CrossRef] [PubMed]
- Usov, N.A.; Antonov, A.S.; Lagar’kov, A.N. Theory of Giant Magneto-Impedance Effect in Amorphous Wires with Different Types of Magnetic Anisotropy. J. Magn. Magn. Mater. 1998, 185, 159–173. [Google Scholar] [CrossRef]
- Drexler, E.S.; Simon, N.J.; Reed, R.P. Properties of Copper and Copper Alloys at Cryogenic Temperatures; U.S. Government Printing Office: Washington, DC, USA, 1992.
- Hecker, M.; Tietjen, D.; Wendrock, H.; Schneider, C.M.; Cramer, N.; Malkinski, L.; Camley, R.E.; Celinski, Z. Annealing Effects and Degradation Mechanism of NiFe/Cu GMR Multilayers. J. Magn. Magn. Mater. 2002, 247, 62–69. [Google Scholar] [CrossRef]
- Chlenova, A.A.; Moiseev, A.A.; Derevyanko, M.S.; Semirov, A.V.; Lepalovsky, V.N.; Kurlyandskaya, G.V. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications. Sensors 2017, 17, 1900. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhou, Y.; Lei, C.; Luo, J.; Xie, S.; Pu, H. Magnetic Impedance Biosensor: A Review. Biosens. Bioelectron. 2017, 90, 418–435. [Google Scholar] [CrossRef]
- García-Arribas, A.; Martínez, F.; Fernández, E.; Ozaeta, I.; Kurlyandskaya, G.V.; Svalov, A.V.; Berganzo, J.; Barandiaran, J.M. GMI Detection of Magnetic-Particle Concentration in Continuous Flow. Sens. Actuators A Phys. 2011, 172, 103–108. [Google Scholar] [CrossRef]
- Liu, J.; Du, Z.; Jiang, S.; Shen, H.; Li, Z.; Xing, D.; Ma, W.; Sun, J. Tailoring Giant Magnetoimpedance Effect of Co-Based Microwires for Optimum Efficiency by Self-Designed Square-Wave Pulse Current Annealing. J. Magn. Magn. Mater. 2015, 385, 145–150. [Google Scholar] [CrossRef]
- Melo, L.G.C.; Ménard, D.; Ciureanu, P.; Yelon, A. Influence of Surface Anisotropy on Magnetoimpedance in Wires. J. Appl. Phys. 2002, 92, 7272–7280. [Google Scholar] [CrossRef]
- Tejedor, M.; Rubio, H.; Elbaile, L.; Iglesias, R. Surface Magnetic Anisotropy in Amorphous Alloys. IEEE Trans. Magn. 1993, 29, 3466–3468. [Google Scholar] [CrossRef]
- Nakai, T. A Uniform Magnetic Field Generator Combined with a Thin-Film Magneto-Impedance Sensor Capable of Human Body Scans. Sensors 2022, 22, 3120. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, M.A.; Viegas, A.D.C.; da Silva, R.B.; de Andrade, A.M.H.; Sommer, R.L. Magnetoimpedance of Single and Multilayered FeCuNbSiB Films in Frequencies up to 1.8GHz. J. Appl. Phys. 2007, 101, 043905. [Google Scholar] [CrossRef]
Number of Layers | n = 2 | n = 3 | ||
---|---|---|---|---|
r1, μm | 76 | 76 | ||
r2, μm | 90 | 87 | 88 | 89 |
r3, μm | 90 | |||
Model designation | m76-90 | m76-87-90 | m76-87-90 | m76-89-90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukreev, D.A.; Derevyanko, M.S.; Moiseev, A.A.; Svalov, A.V.; Semirov, A.V. The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment. Sensors 2022, 22, 9512. https://doi.org/10.3390/s22239512
Bukreev DA, Derevyanko MS, Moiseev AA, Svalov AV, Semirov AV. The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment. Sensors. 2022; 22(23):9512. https://doi.org/10.3390/s22239512
Chicago/Turabian StyleBukreev, Dmitry A., Michael S. Derevyanko, Alexey A. Moiseev, Andrey V. Svalov, and Alexander V. Semirov. 2022. "The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment" Sensors 22, no. 23: 9512. https://doi.org/10.3390/s22239512
APA StyleBukreev, D. A., Derevyanko, M. S., Moiseev, A. A., Svalov, A. V., & Semirov, A. V. (2022). The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment. Sensors, 22(23), 9512. https://doi.org/10.3390/s22239512