Nanocomposite Based on HA/PVTMS/Cl2FeH8O4 as a Gas and Temperature Sensor
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Instruments
2.2. Fabrication of Freeze Dryer
2.3. Preparation of the HA/PVTMS/Cl2FeH8O4 Composite
3. Results and Discussion
3.1. Study of X-ray Diffraction
3.2. Investigation of FTIR
3.3. Study of SEM and TEM Analysis
3.4. Investigation of the Behavior of Composite in an Oxygen Environment
3.5. Fabrication and Investigation Gas/Temperature Sensor Based on Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraden, J. Handbook of Modern Sensors, 4th ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Censabella, M.; Iacono, V.; Scandurra, A.; Moulaee, K.; Neri, G.; Ruffino, F.; Mirabella, S. Low temperature detection of nitric oxide by CuO nanoparticles synthesized by pulsed laser ablation. Sens. Actuators B Chem. 2022, 358, 131489. [Google Scholar] [CrossRef]
- Marquis, B.T.; Vetelino, J.F. A semiconducting metal oxide sensor array for the detection of NOx and NH3. Sens. Actuators B Chem. 2001, 77, 100–110. [Google Scholar] [CrossRef]
- Seif, A.; Nikfarjam, A.; ghassem, H.H. UV enhanced ammonia gas sensing properties of PANI/TiO2 core-shell nanofibers. Sens. Actuators B Chem. 2019, 298, 126906. [Google Scholar] [CrossRef]
- Liu, W.; Sun, J.; Xu, L.; Zhu, S.; Zhou, X.; Yang, S.; Dong, B.; Bai, X.; Lu, G.; Song, H. Understanding the noble metal modifying effect on In2O3 nanowires: Highly sensitive and selective gas sensors for potential early screening of multiple diseases. Nanoscale Horiz. 2019, 4, 1361–1371. [Google Scholar] [CrossRef]
- Hao, H.; Liu, R. Study on preparation and gas sensing property of water-soluble polyaniline/SmBaCuMO5+δ (M=Fe, Co, Ni) for NH3. J. Rare Earths 2014, 32, 23–28. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef] [PubMed]
- Mateev, V.; Marinova, I.; Kartunov, Z. Gas Leakage Source Detection for Li-Ion Batteries by Distributed Sensor Array. Sensors 2019, 19, 2900. [Google Scholar] [CrossRef] [Green Version]
- Owen, S.; Yee, L.H.; Maher, D.T. Low-Cost Nitric Oxide Sensors: Assessment of Temperature and Humidity Effects. Sensors 2022, 22, 9013. [Google Scholar] [CrossRef]
- Ratautaite, V.; Bagdziunas, G.; Ramanavicius, A.; Ramanaviciene, A. An Application of Conducting Polymer Polypyrrole for the Design of Electrochromic pH and CO 2 Sensors. J. Electrochem. Soc. 2019, 166, B297–B303. [Google Scholar] [CrossRef]
- Sekar, C.; Kanchana, P.; Nithyaselvi, R.; Girija, E.K. Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal. Mater. Chem. Phys. 2009, 115, 21–27. [Google Scholar] [CrossRef]
- Xie, C.M.; Lu, X.; Wang, K.F.; Meng, F.Z.; Jiang, O.; Zhang, H.P.; Zhi, W.; Fang, L.M. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces 2014, 6, 8580–8589. [Google Scholar] [CrossRef] [PubMed]
- Bystrova, A.V.; Dekhtyar, Y.D.; Popov, A.I.; Coutinho, J.; Bystrov, V.S. Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics 2015, 475, 135–147. [Google Scholar] [CrossRef]
- Kanchana, P.; Lavanya, N.; Sekar, C. Development of amperometric l-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles. Mater. Sci. Eng. C 2014, 35, 85–91. [Google Scholar] [CrossRef]
- Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials 2020, 10, 1627. [Google Scholar] [CrossRef]
- Pon-On, W.; Meejoo, S.; Tang, I.M. Incorporation of Iron into Nano Hydroxyapatite Particles Synthesized by the Microwave Process. Int. J. Nanosci. 2011, 6, 9–16. [Google Scholar] [CrossRef]
- Kanchana, P.; Sekar, C. Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method. J. Cryst. Growth 2010, 312, 808–816. [Google Scholar] [CrossRef]
- Stojanović, Z.; Veselinović, L.; Marković, S.; Ignjatović, N.; Uskoković, D. Hydrothermal Synthesis of Nanosized Pure and Cobalt-Exchanged Hydroxyapatite. Mater. Manuf. Process. 2009, 24, 1096–1103. [Google Scholar] [CrossRef]
- Jose, S.; Senthilkumar, M.; Elayaraja, K.; Haris, M.; George, A.; Raj, A.D.; Sundaram, S.J.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K. Preparation and characterization of Fe doped n-hydroxyapatite for biomedical application. Surf. Interfaces 2021, 25, 101185. [Google Scholar] [CrossRef]
- Savchyn, V.P.; Popova, A.I.; Aksimentyeva, O.I.; Klym, H.; Horbenko, Y.Y.; Serga, V.; Moskina, A.; Karbovnyk, I. Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low Temp. Phys. 2016, 42, 597. [Google Scholar] [CrossRef]
- Rabiei, M.; Palevicius, A.; Ebrahimi-Kahrizsangi, R.; Nasiri, S.; Vilkauskas, A.; Janusas, G. New Approach for Preparing In Vitro Bioactive Scaffold Consisted of Ag-Doped Hydroxyapatite + Polyvinyltrimethoxysilane. Polymers 2021, 13, 1695. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Kim, D.; Seo, J.; Han, H. Preparation and properties of poly(vinyl alcohol)/vinyltrimethoxysilane (PVA/VTMS) hybrid films with enhanced thermal stability and oxygen barrier properties. Macromol. Res. 2014, 22, 1096–1103. [Google Scholar] [CrossRef]
- Iyyappan, E.; Samuel Justin, S.J.; Wilson, P.; Palaniappan, A. Nanoscale Hydroxyapatite for Electrochemical Sensing of Uric Acid: Roles of Mesopore Volume and Surface Acidity. ACS Appl. Nano Mater. 2020, 3, 7761–7773. [Google Scholar] [CrossRef]
- Sudakar, C. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 2005, 28, 535–545. [Google Scholar]
- Huixia, L.; Yong, L.; Yanni, T.; Lanlan, L.; Qing, Z.; Kun, L.; Hanchun, T. Room temperature gas sensing properties of tubular hydroxyapatite. New J. Chem. 2015, 39, 3865–3874. [Google Scholar] [CrossRef]
- Khtaoui, L.; Laghrouche, M.; Fernane, F.; Chaouchi, A. High-sensitivity humidity sensor based on natural hydroxyapatite. J. Mater. Sci. Mater. Electron. 2021, 32, 8668–8686. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Youssef, M.E.; Abu-Saied, M.A.; Fahmy, A.; Khalil, H.F.; Abdelhai, F. Ion Conducting Nanocomposite Membranes Based on PVA-HA-HAP for Fuel Cell Application: II. Effect of Modifier Agent of PVA on Membrane Properties. Int. J. Electrochem. Sci 2015, 10, 6627–6644. [Google Scholar]
- Coulon, A.; Grandjean, A.; Laurencin, D.; Jollivet, P.; Rossignol, S.; Campayo, L. Durability testing of an iodate-substituted hydroxyapatite designed for the conditioning of 129I. J. Nucl. Mater. 2017, 484, 324–331. [Google Scholar] [CrossRef]
- Thi Le, D.; Phuong Thi Le, T.; Thi Do, H.; Thi Vo, H.; Thi Pham, N.; Thi Nguyen, T.; Thi Cao, H.; Thu Nguyen, P.; Mai Thi Dinh, T.; Viet Le, H.; et al. Fabrication of Porous Hydroxyapatite Granules as an Effective Adsorbent for the Removal of Aqueous Pb(II) Ions. J. Chem. 2019, 2019, 8620181. [Google Scholar] [CrossRef]
- Xia, W.Y.; Feng, Y.S.; Jin, F.; Zhang, L.M.; Du, Y.J. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 2017, 156, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Tagaya, M.; Ikoma, T.; Hanagata, N.; Chakarov, D.; Kasemo, B.; Tanaka, J. Reusable hydroxyapatite nanocrystal sensors for protein adsorption. Sci. Technol. Adv. Mater. 2010, 11, 045002. Available online: http://www.tandfonline.com/action/journalInformation?show=aimsScopejournalCode=tsta20#.VmBmuzZFCUk (accessed on 20 September 2010). [CrossRef] [PubMed] [Green Version]
- Korostynska, O.; Gigilashvili, G.; Mason, A.; Tofail, S.A.M. Hydroxyapatite thick films as pressure sensors. Electr. Act. Mater. Med. Devices 2016, 417–434. [Google Scholar] [CrossRef]
- Pantopoulos, K.; Porwal, S.K.; Tartakoff, A.; Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 2012, 51, 5705–5724. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, H.M.R.; Tavares, I.S.; Neves, S.A.F.; Fontes, R.; Duarte, A.J. Turn-on, photostable, nontoxic and specific, iron(II) sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120380. [Google Scholar] [CrossRef]
- Šutinys, E.; Dzedzickis, A.; Samukaitė-Bubnienė, U.; Bučinskas, V. Novel synthetic iron (III) oxide-based force sensor. Sens. Actuators A Phys. 2021, 331, 113043. [Google Scholar] [CrossRef]
- Chen, L.; Shi, H.; Ye, C.; Xia, X.; Li, Y.; Pan, C.; Song, Y.; Jun, L.; Dong, H.; Wang, D.; et al. Enhanced ethanol-sensing characteristics of Au decorated In-doped SnO2 porous nanotubes at low working temperature. Sens. Actuators B Chem. 2022, 375, 132864. [Google Scholar] [CrossRef]
- Poon, C.K.; Zhou, L.M.; Yam, L.H. Size effect on the optimum actuation condition for SMA-composites. Compos. Struct. 2004, 66, 503–511. [Google Scholar] [CrossRef]
- Taurino, A.; Catalano, M.; Siciliano, P.; Gurlo, A.; Barsan, N.; Weimar, U.; Ivanovskaya, M. Tuning of the Gas-Sensing Properties of Self-Assembled In2O3 Nanoboxes Prepared by Sol Gel Techniques. Sens. Microsyst. 2004, 15, 191–194. [Google Scholar] [CrossRef]
- Agrawal, K.; Singh, G.; Puri, D.; Prakash, S. Synthesis and Characterization of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application. J. Miner. Mater. Charact. Eng. 2011, 10, 727–734. [Google Scholar] [CrossRef]
- Kim, I.S.; Kumta, P.N. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater. Sci. Eng. B 2004, 111, 232–236. [Google Scholar] [CrossRef]
- Gibson, I.R. Natural and Synthetic Hydroxyapatites—The University of Aberdeen Research Portal; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Mohd Pu’ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, e01588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, Y.; Namiki, T.; Tuchida, K.; Nagao, Y.; Misono, T. Preparation and properties of silicon-containing hybrid gels from vinyltrimethoxysilane. J. Non. Cryst. Solids 1992, 147, 47–51. [Google Scholar] [CrossRef]
- Tsuru, K.; Hayakawa, S.; Ohtsuki, C.; Osaka, A. Bioactive Gel Coatings Derived From Vinyltrimethoxysilane. J. Sol-Gel Sci. Technol. 1998, 12, 237–240. [Google Scholar] [CrossRef]
- Vig, J.R. UV/ozone cleaning of surfaces. J. Vac. Sci. Technol. AVac. Surf. Film. 1998, 3, 1027. [Google Scholar] [CrossRef]
- van den Meerakker, J.E.A.M.; van der Straaten, M.H.M. A Mechanistic Study of Silicon Etching in NH 3/H2O2 Cleaning Solutions. J. Electrochem. Soc. 1990, 137, 1239–1243. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nakamura, A.; Hase, U. Control of cleaning performance of an ammonia and hydrogen peroxide mixture (APM) on the basis of a kinetic reaction model. IEEE Trans. Semicond. Manuf. 1999, 12, 288–294. [Google Scholar] [CrossRef]
- Hiroki, A.; LaVerne, J.A. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. J. Phys. Chem. B 2005, 109, 3364–3370. [Google Scholar] [CrossRef]
- Long, N.V.; Yang, Y.; Yuasa, M.; Thi, C.M.; Cao, Y.; Nann, T.; Nogami, M. Controlled synthesis and characterization of iron oxide nanostructures with potential applications for gas sensors and the environment. RSC Adv. 2014, 4, 6383–6390. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, Y.; Li, G.; Chu, Z.; Li, G. Synthesis and enhanced gas sensing properties of iron titanate and copper titanate nanomaterials. Mater. Chem. Phys. 2020, 249, 123016. [Google Scholar] [CrossRef]
- Zhu, K.; Yanagisawa, K.; Shimanouchi, R.; Onda, A.; Kajiyoshi, K.; Qiu, J. Hydrothermal Synthesis and Crystallographic Study of Sr-Pb Hydroxyapatite Solid Solutions. J. Ceram. Soc. Jpn. 2007, 115, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Arcos, D.; Vallet-Regí, M. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 2020, 8, 1781–1800. [Google Scholar] [CrossRef]
- Basu, S.; Basu, B. Doped biphasic calcium phosphate: Synthesis and structure. J. Asian Ceram. Soc. 2019, 7, 265–283. [Google Scholar] [CrossRef]
- Verbeeck, R.M.H.; De Maeyer, E.A.P.; Driessens, F.C.M. Stoichiometry of Potassium- and Carbonate-Containing Apatites Synthesized by Solid State Reactions. Inorg. Chem. 1995, 34, 2084–2088. [Google Scholar] [CrossRef]
- De Maeyer, E.A.P.; Verbeeck, R.M.H.; Naessens, D.E. Stoichiometry of Na+− and CO32−−Containing Apatites Obtained by Hydrolysis of Monetite. Inorg. Chem. 1993, 32, 5709–5714. [Google Scholar] [CrossRef]
- Kesmez, Ö. Preparation of anti-bacterial biocomposite nanofibers fabricated by electrospinning method. J. Turk. Chem. Soc. Sect. A Chem. 2020, 7, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Garbo, C.; Locs, J.; D’este, M.; Demazeau, G.; Mocanu, A.; Roman, C.; Horovitz, O.; Tomoaia-Cotisel, M. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. Int. J. Nanomed. 2020, 15, 1037–1058. [Google Scholar] [CrossRef] [Green Version]
- Lo, M.K.F.; Dazzi, A.; Marcott, C.A.; Dillon, E.; Hu, Q.; Kjoller, K.; Prater, C.B.; King, S.W. Nanoscale Chemical-Mechanical Characterization of Nanoelectronic Low- k Dielectric/Cu Interconnects. ECS J. Solid State Sci. Technol. 2016, 5, P3018–P3024. [Google Scholar] [CrossRef]
- Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Terra, J.; Dourado, E.R.; Eon, J.G.; Ellis, D.E.; Gonzalez, G.; Rossi, A.M. The structure of strontium-doped hydroxyapatite: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2009, 11, 568–577. [Google Scholar] [CrossRef]
- Ehret, C.; Aid-Launais, R.; Sagardoy, T.; Siadous, R.; Bareille, R.; Rey, S.; Pechev, S.; Etienne, L.; Kalisky, J.; De Mones, E.; et al. Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLoS ONE 2017, 12, e0184663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübner, W.; Blume, A.; Pushnjakova, R.; Dekhtyar, Y.; Hein, H.J. The Influence of X-ray Radiation on the Mineral/Organic Matrix Interaction of Bone Tissue: An FT-IR Microscopic Investigation. Int. J. Artif. Organs 2018, 28, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Baier, M.; Staudt, P.; Klein, R.; Sommer, U.; Wenz, R.; Grafe, I.; Meeder, P.J.; Nawroth, P.P.; Kasperk, C. Strontium enhances osseointegration of calcium phosphate cement: A histomorphometric pilot study in ovariectomized rats. J. Orthop. Surg. Res. 2013, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Motelica-Heino, M.; Guegan, R.; Buton, N. Evaluation of Antibacterial Activity of Zinc-Doped Hydroxyapatite Colloids and Dispersion Stability Using Ultrasounds. Nanomater. 2019, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, C.S.; Iconaru, S.L.; Chifiriuc, M.C.; Costescu, A.; Le Coustumer, P.; Predoi, D. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed Res. Int. 2013, 2013, 916218. [Google Scholar] [CrossRef] [Green Version]
- Mayo, M.J. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 2013, 41, 85–115. [Google Scholar] [CrossRef]
- Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr. Appl. Phys. 2008, 8, 270–272. [Google Scholar] [CrossRef]
- Ain, Q.U.; Munir, H.; Jelani, F.; Anjum, F.; Bilal, M. Antibacterial potential of biomaterial derived nanoparticles for drug delivery application. Mater. Res. Express 2020, 6, 125426. [Google Scholar] [CrossRef]
- Eddya, M.; Tbib, B.; El-Hami, K. High Photocatalytic Activity of Hydroxyapatite Biodegradable Semiconductor for Solar Panels and Environment Protection. 2018. Available online: https://www.openscience.fr (accessed on 14 November 2022).
- Wehmeier, F.; Mattay, J. A perfluorocyclopentene based diarylethene bearing two terpyridine moieties—Synthesis, photochemical properties and influence of transition metal ions. Beilstein J. Org. Chem. 2010, 6, 53. [Google Scholar] [CrossRef]
- Hadagalli, K.; Shenoy, S.; Shakya, K.R.; Manjunath, G.; Tarafder, K.; Mandal, S.; Basu, B. Effect of Fe3+ substitution on the structural modification and band structure modulated UV absorption of hydroxyapatite. Int. J. Appl. Ceram. Technol. 2021, 18, 332–344. [Google Scholar] [CrossRef]
- Lin, K.; Chang, J. Structure and properties of hydroxyapatite for biomedical applications. In Hydroxyapatite (HAp) for Biomedical Applications; Woodhead Publishing: Sawston, UK, 2015; pp. 3–19. [Google Scholar] [CrossRef]
- Mane, A.A.; Moholkar, A.V. Orthorhombic MoO3 nanobelts based NO2 gas sensor. Appl. Surf. Sci. 2017, 405, 427–440. [Google Scholar] [CrossRef]
- Shinde, N.M.; Deokate, R.J.; Lokhande, C.D. Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films. J. Anal. Appl. Pyrolysis 2013, 100, 12–16. [Google Scholar] [CrossRef]
- Martínez, H.M.; Torres, J.; López-Carreño, L.D.; Rodríguez-García, M.E.; De Materiales, G.; Tecnológicas, A. The Effect of Substrate Temperature on the Optical Properties of MoO3 Nano-crystals Prepared Using Spray Pyrolysis. J. Supercond. Nov. Magn. 2013, 26, 2485–2488. [Google Scholar] [CrossRef]
- Venkatramaiah, V.; Kumar, S.; Patil, S. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics. Chem. Commun. 2012, 48, 5007–5009. [Google Scholar] [CrossRef]
- Setshedi, K.; Ren, J.; Ochieng, A.; Onyango, M.S. Removal of Pb (II) from aqueous solution using hydrotalcite-like nanostructured material. Int. J. Phys. Sci. 2012, 7, 63–72. [Google Scholar] [CrossRef]
- Giraldo, L.; Carlos Moreno-Piraján, J. Adsorption studies of cyanide onto activated carbon and γ-alumina impregnated with cooper ions. Nat. Sci. 2010, 02, 1066–1072. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, S.; Dashti, A.; Hosseinnezhad, M.; Rabiei, M.; Palevicius, A.; Doustmohammadi, A.; Janusas, G. Mechanochromic and thermally activated delayed fluorescence dyes obtained from D–A–D′ type, consisted of xanthen and carbazole derivatives as an emitter layer in organic light emitting diodes. Chem. Eng. J. 2022, 430, 131877. [Google Scholar] [CrossRef]
- Sivakumar, S.; Anusuya, D.; Khatiwada, C.P.; Sivasubramanian, J.; Venkatesan, A.; Soundhirarajan, P. Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnezhad, M.; Nasiri, S.; Movahedi, J.; Ghahari, M. Improving the efficiency of organic sensitizers with various anchoring groups for solar energy applications. Sol. Energy 2020, 211, 228–235. [Google Scholar] [CrossRef]
- Bouzidi, A.; Benramdane, N.; Tabet-Derraz, H.; Mathieu, C.; Khelifa, B.; Desfeux, R. Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. Mater. Sci. Eng. B 2003, 97, 5–8. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Chen, T.; Jin, W.; Yang, T.; Cao, M.; Liu, S.; Zhou, J.; Zakharova, G.S.; Chen, W. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol. Appl. Surf. Sci. 2017, 393, 377–384. [Google Scholar] [CrossRef]
- Machado, T.R.; Sczancoski, J.C.; Beltrán-Mir, H.; Li, M.S.; Andrés, J.; Cordoncillo, E.; Leite, E.; Longo, E. Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes. Ceram. Int. 2018, 44, 236–245. [Google Scholar] [CrossRef]
- Rufus, A.; Sreeju, N.; Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016, 6, 94206–94217. [Google Scholar] [CrossRef]
- Han, Q.; Liu, Z.; Xu, Y.; Chen, Z.; Wang, T.; Zhang, H. Growth and properties of single-crystalline γ-Fe2O3 nanowires. J. Phys. Chem. C 2007, 111, 5034–5038. [Google Scholar] [CrossRef]
- Cortés-Escobedo, C.A.; Bolarín-Miró, A.M.; Jesús, F.S.-D.; Valenzuela, R.; Juárez-Camacho, E.P.; Samperio-Gómez, I.L.; Ammar, S.; Cortés-Escobedo, C.A.; Bolarín-Miró, A.M.; Jesús, F.S.-D.; et al. Y3Fe5O12 Prepared by Mechanosynthesis from Different Iron Sources. Adv. Mater. Phys. Chem. 2013, 3, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnezhad, M.; Movahedi, J.; Nasiri, S. High stability photosensitizers for dye-sensitized solar cells: Synthesis, characterization and optical performance. Opt. Mater. 2020, 109, 110198. [Google Scholar] [CrossRef]
- Venkatramaiah, N.; Kumar, S.; Patil, S. Femtogram Detection of Explosive Nitroaromatics: Fluoranthene-Based Fluorescent Chemosensors. Chem. Eur. J. 2012, 18, 14745–14751. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnezhad, M.; Nasiri, S.; Fathi, M.; Ghahari, M.; Gharanjig, K. Introduction of new configuration of dyes contain indigo group for dye-sensitized solar cells: DFT and photovoltaic study. Opt. Mater. 2022, 124, 111999. [Google Scholar] [CrossRef]
- Kanai, K.; Koizumi, K.; Ouchi, S.; Tsukamoto, Y.; Sakanoue, K.; Ouchi, Y.; Seki, K. Electronic structure of anode interface with molybdenum oxide buffer layer. Org. Electron. 2010, 11, 188–194. [Google Scholar] [CrossRef]
- Lee, C.H.; Choi, G.M. Electrical conductivity of CeO2-doped YSZ. Solid State Ion. 2000, 135, 653–661. [Google Scholar] [CrossRef]
- López-Gándara, C.; Ramos, F.M.; Cirera, A. YSZ-Based Oxygen Sensors and the Use of Nanomaterials: A Review from Classical Models to Current Trends. J. Sens. 2009, 2009, 258489. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Lu, Y.; Podval’naya, N.V.; Chen, W.; Zakharova, G.S. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol. Appl. Surf. Sci. 2015, 359, 114–119. [Google Scholar] [CrossRef]
- Sui, L.; Zhang, X.; Cheng, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Au-loaded hierarchical MoO3 Hollow spheres with enhanced gas-sensing performance for the detection of BTX (Benzene, Toluene, And Xylene) and the sensing mechanism. ACS Appl. Mater. Interfaces 2017, 9, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.R.; Khairnar, R.S. Carbon Nanotubes Blended Hydroxyapatite Ethanol Sensor. Sens. Imaging 2016, 17, 18. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Fang, S.; Han, Z.; Zhao, M.; Wu, Z.; Liu, X.; Qin, H. Ethanol-sensing properties of SmFe1−xNixO3 perovskite oxides. Sens. Actuators B Chem. 2009, 139, 407–410. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Lokhande, C.D. Chemically deposited cubic structured CdO thin films: Use in liquefied petroleum gas sensor. Sens. Actuators B Chem. 2014, 200, 245–250. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Wang, L.; Liu, J.; Zhang, B.; Gao, Y.; Sun, P.; Sun, Y.; Zhang, T.; Lu, G. Horseshoe-shaped SnO2 with annulus-like mesoporous for ethanol gas sensing application. Sens. Actuators B Chem. 2017, 240, 1321–1329. [Google Scholar] [CrossRef]
Number | Element | Weight % |
---|---|---|
1 | Fe | 12.31 ± 0.01 |
2 | Cl | 7.29 ± 0.01 |
3 | P | 22.21 ± 0.01 |
4 | Ca | 33.63 ± 0.01 |
5 | O | 14.14 ± 0.01 |
6 | Si | 2.38 ± 0.01 |
7 | C | 7.00 ± 0.01 |
8 | Cu | 1.04 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiri, S.; Rabiei, M.; Markuniene, I.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Palevicius, A.; Vilkauskas, A.; Janusas, G. Nanocomposite Based on HA/PVTMS/Cl2FeH8O4 as a Gas and Temperature Sensor. Sensors 2022, 22, 10012. https://doi.org/10.3390/s222410012
Nasiri S, Rabiei M, Markuniene I, Hosseinnezhad M, Ebrahimi-Kahrizsangi R, Palevicius A, Vilkauskas A, Janusas G. Nanocomposite Based on HA/PVTMS/Cl2FeH8O4 as a Gas and Temperature Sensor. Sensors. 2022; 22(24):10012. https://doi.org/10.3390/s222410012
Chicago/Turabian StyleNasiri, Sohrab, Marzieh Rabiei, Ieva Markuniene, Mozhgan Hosseinnezhad, Reza Ebrahimi-Kahrizsangi, Arvydas Palevicius, Andrius Vilkauskas, and Giedrius Janusas. 2022. "Nanocomposite Based on HA/PVTMS/Cl2FeH8O4 as a Gas and Temperature Sensor" Sensors 22, no. 24: 10012. https://doi.org/10.3390/s222410012
APA StyleNasiri, S., Rabiei, M., Markuniene, I., Hosseinnezhad, M., Ebrahimi-Kahrizsangi, R., Palevicius, A., Vilkauskas, A., & Janusas, G. (2022). Nanocomposite Based on HA/PVTMS/Cl2FeH8O4 as a Gas and Temperature Sensor. Sensors, 22(24), 10012. https://doi.org/10.3390/s222410012