Feature Consistent Point Cloud Registration in Building Information Modeling
Abstract
:1. Introduction
- 1
- Introduce a boundary-encouraging point cloud feature, , to represent local geometry with higher generalization for registration, as well as solve the normal ambiguity problem.
- 2
- Introduce feature matching loss to the feature extractor to produce consistent hybrid representation.
- 3
- Our PMDNet shows state-of-the-art performance and higher generalization on samples from different distributions. Moreover, high performance still can be observed even when the clouds become more sparse as the distance increases.
2. Related Work
2.1. Classic Registration Methods
2.2. Feature-Based Registration Methods
2.3. Learning-Based Registration Methods
2.4. Registration in BIM
3. Feature Consistent Registration
3.1. Feature: Local Reference Frame to Encourage Boundaries
3.2. : Feature-Aware Loss towards Feature Consistency
3.3. Annealing Parameter Network
- F is the hybrid feature in high dimensional space generated by the extractor.
- serves as a threshold to preserve inliers and punish outliers.
- is an annealing parameter to ensure convergence.
4. Experiments
4.1. Metrics
4.2. Ablation Experiment
ID | Scene | MAE(R)↓ | MAE(T)↓ | CCD()↓ | Recall↑ (1.0, 0.1) | Recall↑ (0.1, 0.01) |
---|---|---|---|---|---|---|
Clean | 0.0467 | 0.00039 | 0.003226 | 99.83% | 91.76% | |
Clean | 0.1680 | 0.00116 | 0.019487 | 98.50% | 44.67% | |
Clean | 0.0939 | 0.00066 | 0.007329 | 99.25% | 76.70% | |
Clean | 0.3773 | 0.00216 | 0.062771 | 95.59% | 45.25% | |
Clean | 0.1026 | 0.00075 | 0.006270 | 99.25% | 76.45% | |
Noise | 1.1201 | 0.00990 | 0.840589 | 80.28% | 1.33% | |
Noise | 1.1571 | 0.01000 | 0.840061 | 81.19% | 1.16% | |
Noise | 1.1957 | 0.01040 | 0.869413 | 79.36% | 0.74% | |
Noise | 1.4199 | 0.01190 | 0.998256 | 62.14% | 0.83% | |
Noise | 1.1365 | 0.01010 | 0.856646 | 80.61% | 1.49% | |
Unseen | 0.0423 | 0.00037 | 0.003137 | 100.00% | 92.02% | |
Unseen | 0.1642 | 0.00117 | 0.022608 | 98.65% | 44.70% | |
Unseen | 0.0858 | 0.00063 | 0.006717 | 99.68% | 78.27% | |
Unseen | 0.1947 | 0.00148 | 0.045716 | 97.70% | 49.28% | |
Unseen | 0.0803 | 0.00058 | 0.005054 | 99.52% | 80.64% |
4.3. Registration Comparing on ModelNet40
4.3.1. Generalization Capability
4.3.2. Gaussian Noise
4.4. Registration Comparing on BIM Scenarios
4.4.1. Clouds of Uniform Density
4.4.2. Clouds with Varying Density
4.5. Time Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.Y.; Kang, K.; Lin, J.R.; Zhang, J.P.; Zhang, Y. Building information modeling–based cyber-physical platform for building performance monitoring. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720908170. [Google Scholar] [CrossRef] [Green Version]
- Sporr, A.; Zucker, G.; Hofmann, R. Automated HVAC Control Creation Based on Building Information Modeling (BIM): Ventilation System. IEEE Access 2019, 7, 74747–74758. [Google Scholar] [CrossRef]
- Alhassan, B.; Omran, J.Y.; Jrad, F.A. Maintenance management for public buildings using building information modeling BIM. Int. J. Inf. Syst. Soc. Change 2019, 10, 42–56. [Google Scholar] [CrossRef]
- Xie, Q.; Zhou, X.; Wang, J.; Gao, X.; Chen, X.; Liu, C. Matching Real-World Facilities to Building Information Modeling Data Using Natural Language Processing. IEEE Access 2019, 7, 119465–119475. [Google Scholar] [CrossRef]
- Wang, W.C.; Weng, S.W.; Wang, S.H.; Chen, C.Y. Integrating building information models with construction process simulations for project scheduling support. Autom. Constr. 2014, 37, 68–80. [Google Scholar] [CrossRef]
- Honcharenko, T.; Tsiutsiura, S.; Kyivska, K.; Balina, O.; Bezklubenko, I. Transform Approach for Formation of Construction Project Management Teams Based on Building Information Modeling. In Proceedings of the ITPM, Slavsko, Ukraine, 16–18 February 2021; pp. 11–21. [Google Scholar]
- Hu, C.; Zhang, S. Study on BIM technology application in the whole life cycle of the utility tunnel. In Proceedings of the International Symposium for Intelligent Transportation and Smart City, Shanghai, China, 9–11 May 2019; pp. 277–285. [Google Scholar]
- Ryzhakov, D. Innovative Tools for Management the Lifecycle of Strategic Objectives of the Enterprise-Stakeholder in Construction. Int. J. Emerg. Trends Eng. Res. 2020, 8, 4526–4532. [Google Scholar] [CrossRef]
- Choi, J.; Choi, J.; Kim, I. Development of BIM-based evacuation regulation checking system for high-rise and complex buildings. Autom. Constr. 2014, 46, 38–49. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, W.C.; Wang, K.C.; Shih, S.Y. Applying building information modeling to support fire safety management. Autom. Constr. 2015, 59, 158–167. [Google Scholar] [CrossRef]
- Wang, K.C.; Shih, S.Y.; Chan, W.S.; Wang, W.C.; Wang, S.H.; Gansonre, A.A.; Liu, J.J.; Lee, M.T.; Cheng, Y.Y.; Yeh, M.F. Application of building information modeling in designing fire evacuation—A case study. In Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining, ISARC 2014, Sydney, Australia, 9–11 July 2014; pp. 593–601. [Google Scholar]
- Lotfi, N.; Behnam, B.; Peyman, F. A BIM-based framework for evacuation assessment of high-rise buildings under post-earthquake fires. J. Build. Eng. 2021, 43, 102559. [Google Scholar] [CrossRef]
- Siountri, K.; Skondras, E.; Vergados, D.D. Developing Smart Buildings Using Blockchain, Internet of Things, and Building Information Modeling. Int. J. Interdiscip. Telecommun. Netw. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Lokshina, I.V.; Greguš, M.; Thomas, W.L. Application of integrated building information modeling, IoT and blockchain technologies in system design of a smart building. Procedia Comput. Sci. 2019, 160, 497–502. [Google Scholar] [CrossRef]
- Gebken, L.; Drews, P.; Schirmer, I. Enhancing the Building Information Modeling Lifecycle of Complex Structures with IoT: Phases, Capabilities and Use Cases. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Trach, R.; Bushuyev, S. Analysis communication network of construction project participants. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 2020, 29. [Google Scholar] [CrossRef]
- Bushuyev, S.; Shkuro, M. Development of proactive method of communications for projects of ensuring the energy efficiency of municipal infrastructure. EUREKA Phys. Eng. 2019, 1, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Bonenberg, W.; Zhou, M.; Wang, J. The Impact of Building Information Modeling Design System on Traditional Urban Design Methods. In Advances in Human Factors in Architecture, Sustainable Urban Planning and Infrastructure, Proceedings of the AHFE 2021 Virtual Conference on Human Factors in Architecture, Sustainable Urban Planning and Infrastructure, San Francisco, CA, USA, 25–29 July 2021; Lecture Notes in Networks and Systems; Charytonowicz, J., Maciejko, A., Falcão, C.S., Eds.; Springer: Berlin, Germany, 2021; Volume 272, pp. 302–309. [Google Scholar]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Engelmann, F.; Rematas, K.; Leibe, B.; Ferrari, V. From Points to Multi-Object 3D Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 4588–4597. [Google Scholar]
- Xie, J.; Xu, Y.; Zheng, Z.; Zhu, S.C.; Wu, Y.N. Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14976–14985. [Google Scholar]
- Qi, G.; Jinhui, L. A learning based 3D reconstruction method for point cloud. In Proceedings of the 2020 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calabria, Italy, 12–15 September 2020; pp. 271–276. [Google Scholar]
- Navaneet, K.; Mandikal, P.; Agarwal, M.; Babu, R.V. Capnet: Continuous approximation projection for 3d point cloud reconstruction using 2d supervision. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8819–8826. [Google Scholar]
- Babu, A.; Yurtdas, K.Y.; Koch, C.E.S.; Yüksel, M. Trajectory Following using Nonlinear Model Predictive Control and 3D Point-Cloud-based Localization for Autonomous Driving. In Proceedings of the 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–6. [Google Scholar]
- Rozenberszki, D.; Majdik, A.L. LOL: Lidar-only Odometry and Localization in 3D point cloud maps. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Virtual, 31 May–31 August 2020; pp. 4379–4385. [Google Scholar]
- O’Sullivan, E.; Zafeiriou, S. 3D Landmark Localization in Point Clouds for the Human Ear. In Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 402–406. [Google Scholar]
- Xie, Q.; Zhang, Y.; Cao, X.; Xu, Y.; Lu, D.; Chen, H.; Wang, J. Part-in-whole point cloud registration for aircraft partial scan automated localization. Comput.-Aided Des. 2021, 137, 103042. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, L.; Deng, X.; Xia, S. Sequential 3D Human Pose Estimation Using Adaptive Point Cloud Sampling Strategy. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), Montreal, QC, USA, 19–26 August 2021. [Google Scholar]
- Marcon, M.; Bellon, O.R.P.; Silva, L. Towards real-time object recognition and pose estimation in point clouds. arXiv 2020, arXiv:2011.13669. [Google Scholar]
- He, Y.; Sun, W.; Huang, H.; Liu, J.; Fan, H.; Sun, J. Pvn3d: A deep point-wise 3d keypoints voting network for 6dof pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11632–11641. [Google Scholar]
- Wei, F.; Sun, X.; Li, H.; Wang, J.; Lin, S. Point-set anchors for object detection, instance segmentation and pose estimation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 527–544. [Google Scholar]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 2–15 November 1991; Volume 1611, pp. 586–606. [Google Scholar]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [Google Scholar]
- Zhang, J.; Yao, Y.; Deng, B. Fast and robust iterative closest point. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3450–3466. [Google Scholar] [CrossRef]
- Eckart, B.; Kim, K.; Kautz, J. Hgmr: Hierarchical gaussian mixtures for adaptive 3d registration. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 705–721. [Google Scholar]
- Yuan, W.; Eckart, B.; Kim, K.; Jampani, V.; Fox, D.; Kautz, J. Deepgmr: Learning latent gaussian mixture models for registration. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 733–750. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model globally, match locally: Efficient and robust 3D object recognition. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 998–1005. [Google Scholar]
- Wang, Y.; Solomon, J.M. Prnet: Self-supervised learning for partial-to-partial registration. arXiv 2019, arXiv:1910.12240. [Google Scholar]
- Lu, W.; Wan, G.; Zhou, Y.; Fu, X.; Yuan, P.; Song, S. DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Deng, H.; Birdal, T.; Ilic, S. Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 195–205. [Google Scholar]
- Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 27 October–2 November 2019; pp. 7163–7172. [Google Scholar]
- Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3523–3532. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H. Luc Van Gool, SURF: Speeded-Up Robust Features. In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Li, J.; Lee, G.H. Usip: Unsupervised stable interest point detection from 3d point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 361–370. [Google Scholar]
- Tinchev, G.; Penate-Sanchez, A.; Fallon, M. Skd: Keypoint detection for point clouds using saliency estimation. IEEE Robot. Autom. Lett. 2021, 6, 3785–3792. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- Johnson, A.E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Makadia, A.; Patterson, A.; Daniilidis, K. Fully automatic registration of 3D point clouds. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 1297–1304. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Li, L.; Yang, F.; Zhu, H.; Li, D.; Li, Y.; Tang, L. An improved RANSAC for 3D point cloud plane segmentation based on normal distribution transformation cells. Remote Sens. 2017, 9, 433. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Nurunnabi, A.; Belton, D.; West, G. Robust segmentation in laser scanning 3D point cloud data. In Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, Australia, 3–5 December 2012; pp. 1–8. [Google Scholar]
- Grant, W.S.; Voorhies, R.C.; Itti, L. Finding planes in LiDAR point clouds for real-time registration. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4347–4354. [Google Scholar]
- Li, M.; Gao, X.; Wang, L.; Li, G. Automatic registration of laser-scanned point clouds based on planar features. In Proceedings of the 2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), Xiamen, China, 28–30 April 2015; Volume 9901, pp. 7–13. [Google Scholar]
- Mahmood, B.; Han, S.; Lee, D.E. BIM-Based Registration and Localization of 3D Point Clouds of Indoor Scenes Using Geometric Features for Augmented Reality. Remote Sens. 2020, 12, 2302. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Tan, J.; Liu, H. Pairwise Coarse Registration of Indoor Point Clouds Using 2D Line Features. ISPRS Int. J. Geo-Inf. 2021, 10, 26. [Google Scholar] [CrossRef]
- Sheik, N.A.; Deruyter, G.; Veelaert, P. Plane-Based Robust Registration of a Building Scan with Its BIM. Remote Sens. 2022, 14, 1979. [Google Scholar] [CrossRef]
- Sinkhorn, R. A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 1964, 35, 876–879. [Google Scholar] [CrossRef]
- Yew, Z.J.; Lee, G.H. Rpm-net: Robust point matching using learned features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11824–11833. [Google Scholar]
- Fu, K.; Liu, S.; Luo, X.; Wang, M. Robust point cloud registration framework based on deep graph matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8893–8902. [Google Scholar]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Rawat, P.; Bhadoria, R.S.; Gupta, P.; Dimri, P.; Saroha, G. Performance evaluation of an adopted model based on big-bang big-crunch and artificial neural network for cloud applications. Kuwait J. Sci. 2021, 48, 1–13. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
learning rate | |
epochs | 1024 |
batch size | 8 |
optimizer | Adam |
Metrics | Ref Equation | Notes |
---|---|---|
err_r_deg_mean (ERM) | Equation (11) | Mean of isotropic Error of Rotation |
err_t_mean (ETM) | Equation (12) | Mean of isotropic Error of Translation |
CCD | Equation (14) | Clip Chamfer Distance |
MAE(R) | - | Mean Absolute Error of Rotation, in the unit of degrees |
MAE(T) | - | Mean Absolute Error of Translation, in the unit of degrees |
Recall() | - | Proportion of samples with, MAE(R) < () and MAE(t) < (m) |
ID | ||||
---|---|---|---|---|
✓ | ✓ | ✓ | ✓ | |
✓ | ✓ | ✓ | ||
✓ | ✓ | |||
✓ | ✓ | |||
✓ | ✓ | ✓ |
Method | MAE(R)↓ | MAE(t)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
ICP | 6.4467 | 0.05446 | 3.079 | 0.02442 | 0.030090 | 74.19% |
FGR | 0.0099 | 0.00010 | 0.006 | 0.00005 | 0.000190 | 99.96% |
RPMNet | 0.2464 | 0.00050 | 0.109 | 0.00050 | 0.000890 | 98.14% |
IDAM | 1.3536 | 0.02605 | 0.731 | 0.01244 | 0.044700 | 75.81% |
DeepGMR | 0.0156 | 0.00002 | 0.001 | 0.00001 | 0.000030 | 100.00% |
PMDNet | 0.0467 | 0.00039 | 0.087 | 0.00081 | 0.000003 | 99.83% |
Method | MAE(R)↓ | MAE(t)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
FGR | 41.9631 | 0.29106 | 23.950 | 0.14067 | 0.123700 | 5.13% |
RPMNet | 1.9826 | 0.02276 | 1.041 | 0.01067 | 0.087040 | 75.59% |
IDAM | 19.3249 | 0.20729 | 10.158 | 0.10063 | 0.129210 | 0.95% |
DeepGMR | 71.0677 | 0.44632 | 44.363 | 0.22039 | 0.147280 | 0.24% |
DCP v2 | 2.0072 | 0.00370 | 3.150 | 0.00503 | NA | NA |
PMDNet | 0.0423 | 0.00037 | 0.076 | 0.00075 | 0.000003 | 100.00% |
Method | MAE(R)↓ | MAE(t)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
ICP | 6.5030 | 0.04944 | 3.127 | 0.0225 | 0.05387 | 77.59% |
FGR | 10.0079 | 0.07080 | 5.405 | 0.0338 | 0.06918 | 30.75% |
RPMNet | 0.5773 | 0.00532 | 0.305 | 0.0025 | 0.04257 | 96.68% |
IDAM | 3.4916 | 0.02915 | 1.818 | 0.0141 | 0.05436 | 49.59% |
DeepGMR | 2.2736 | 0.01498 | 1.178 | 0.0071 | 0.05029 | 56.52% |
DCP v2 | 0.7374 | 0.00105 | 1.081 | 0.0015 | NA | NA |
PMDNet | 1.1201 | 0.00990 | 2.224 | 0.0208 | 0.00084 | 80.28% |
Methods | MAE(R)↓ | MAE(T)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
DCP v1 | 3.9788 | 0.00433 | 5.641 | 0.08823 | 0.089453 | 13.33% |
DCP v2 | 1.0328 | 0.01319 | 1.415 | 0.02614 | 0.088061 | 50.00% |
IDAM | 23.7044 | 0.08125 | 50.176 | 0.16067 | 0.094456 | 0.00% |
PMDNet | 0.1447 | 0.00089 | 0.522 | 0.00181 | 0.000009 | 100.00% |
Methods | MAE(R)↓ | MAE(T)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
DCP v1 | 3.8952 | 0.04443 | 5.528 | 0.08900 | 0.088047 | 10.00% |
DCP v2 | 0.0298 | 0.02985 | 1.241 | 0.05893 | 0.088041 | 56.67% |
IDAM | 21.9374 | 0.08308 | 48.064 | 0.16032 | 0.088634 | 0.00% |
PMDNet | 3.7088 | 0.01696 | 10.097 | 0.04232 | 0.002669 | 90.00% |
PMDNet | 0.3039 | 0.00241 | 0.496 | 0.00490 | 0.000442 | 100.00% |
Methods | MAE(R)↓ | MAE(T)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
DCP v1 | 3.6161 | 0.95663 | 5.130 | 1.12523 | 0.198468 | 0.00% |
DCP v2 | 0.9948 | 0.96918 | 1.410 | 1.11823 | 0.198336 | 0.00% |
IDAM | 23.0635 | 1.56710 | 26.303 | 1.78247 | 0.199977 | 0.00% |
PMDNet | 0.0622 | 0.00041 | 0.101 | 0.00061 | 0.000002 | 100.00% |
Methods | MAE(R)↓ | MAE(T)↓ | ERM↓ | ETM↓ | CCD↓ | Recall(1.0, 0.1)↑ |
---|---|---|---|---|---|---|
DCP v1 | 3.1935 | 0.93363 | 4.281 | 1.09541 | 0.198179 | 0.00% |
DCP v2 | 1.0033 | 0.94744 | 1.295 | 1.08987 | 0.198062 | 0.00% |
IDAM | 23.0495 | 1.52381 | 26.616 | 1.71634 | 0.200000 | 0.00% |
PMDNet | 4.6186 | 0.03232 | 23.987 | 0.13219 | 0.001516 | 90.00% |
PMDNet | 0.4358 | 0.00305 | 0.736 | 0.00604 | 0.000493 | 96.67% |
Points | DCP v2(3 Iters) | RPMNet(3 Iters) | IDAM(3 Iters) | PMDNet(3 Iters) |
---|---|---|---|---|
512 | 15.04 | 32.47 | 5.84 | 17.72 |
1024 | 18.81 | 38.35 | 7.11 | 21.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Lasang, P.; Nader, G.; Wu, Z.; Tanasnitikul, T. Feature Consistent Point Cloud Registration in Building Information Modeling. Sensors 2022, 22, 9694. https://doi.org/10.3390/s22249694
Jiang H, Lasang P, Nader G, Wu Z, Tanasnitikul T. Feature Consistent Point Cloud Registration in Building Information Modeling. Sensors. 2022; 22(24):9694. https://doi.org/10.3390/s22249694
Chicago/Turabian StyleJiang, Hengyu, Pongsak Lasang, Georges Nader, Zheng Wu, and Takrit Tanasnitikul. 2022. "Feature Consistent Point Cloud Registration in Building Information Modeling" Sensors 22, no. 24: 9694. https://doi.org/10.3390/s22249694
APA StyleJiang, H., Lasang, P., Nader, G., Wu, Z., & Tanasnitikul, T. (2022). Feature Consistent Point Cloud Registration in Building Information Modeling. Sensors, 22(24), 9694. https://doi.org/10.3390/s22249694