Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Altimetry Satellite Data
2.2.2. In-Situ Data
2.2.3. Lake Water Level Extraction
2.2.4. Unified Satellite Measured Water Level Datum
2.2.5. Outlier Detection of Water Level in Satellite Retrieval
2.2.6. Validation Indicators
3. Results and Discussion
- (1)
- The deviation between the measured water level by ICESat-2 satellite and the in-situ data is stable.
- (2)
- ICESat-2 satellite has a high spatial resolution and can obtain the measured water level in most lakes and provide offset corrections for other satellites.
- (3)
- It can be seen from Figure 5 that ICESat-2 satellite does not have the same situation as HY-2B satellite at station 9087068: The measured water level is distributed above and below the in-situ data, RMSE is higher and R is lower than the other satellites, but the bias value is the smallest among all satellites, which is only 0.03 m.
4. Conclusions
- (1)
- ICESat-2 satellite is second only to Jason-3 and Sentinel-6 satellites in accuracy among the seven satellites, with the highest spatial resolution and the best overall performance. Therefore, it can be used as a datum satellite for multi-source satellite altimetry measured water levels.
- (2)
- As a follow-up mission to Jason-3, Sentinel-6 satellite has the highest accuracy among the seven satellites. Sentinel-6 is superior to Sentinel-3A in capturing water level changes and temporal resolution, and Sentinel-3A is superior to Sentinel-6 in spatial resolution.
- (3)
- HY-2C has the highest temporal resolution among all satellites, and the number of measured water levels by a single satellite around stations 9063053 and 9075014 is equivalent to the total number of measured water levels by the other six satellites. Although HY-2B and HY-2C are slightly lower than the other satellites, the overall accuracy of HY-2C has a certain improvement compared with HY-2B satellite. It can be expected that the follow-up satellites of the HY series will achieve higher accuracy. Moreover, HY-2C satellite provides the highest temporal resolution at the same station, and has great potential for capturing more detailed water level data.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Madson, A.; Sheng, Y. Automated Water Level Monitoring at the Continental Scale from ICESat-2 Photons. Remote Sens. 2021, 13, 3631. [Google Scholar] [CrossRef]
- Chen, P.; An, Z.; Xue, H.; Yao, Y.; Yang, X.; Wang, R.; Wang, Z. INPPTR: An Improved Retracking algorithm for Inland Water levels Estimation Using Cryosat-2 SARin Data. J. Hydrol. 2022, 613, 128439. [Google Scholar] [CrossRef]
- Lin, Y.; Li, X.; Zhang, T.; Chao, N.; Yu, J.; Cai, J.; Sneeuw, N. Water Volume Variations Estimation and Analysis Using Multisource Satellite Data: A Case Study of Lake Victoria. Remote Sens. 2020, 12, 3052. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. CR Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Hannah, D.M.; DeMuth, S.; van Lanen, H.A.J.; Looser, U.; Prudhomme, C.; Rees, G.; Stahl, K.; Tallaksen, L.M. Large-scale river flow archives: Importance, current status and future needs. Hydrol. Process. 2011, 25, 1191–1200. [Google Scholar] [CrossRef]
- Hossain, F.; Siddique-E.-Akbor, A.H.; Mazumder, L.C.; ShahNewaz, S.M.; Biancamaria, S.; Lee, H.; Shum, C.K. Proof of Concept of an Altimeter-Based River Forecasting System for Transboundary Flow Inside Bangladesh. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Weeser, B.; Jacobs, S.; Kraft, P.; Rufino, M.C.; Breuer, L. Rainfall-Runoff Modeling Using Crowdsourced Water Level Data. Water Resour. Res. 2019, 55, 10856–10871. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Malm, J. Using rainfall-runoff modeling to interpret lake level data. J. Paleolimnol. 1997, 18, 235–248. [Google Scholar] [CrossRef]
- Sood, A.; Smakhtin, V. Global hydrological models: A review. Hydrol. Sci. J. 2015, 60, 549–565. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Lan, M.; Xu, M.; Yang, B.; Huang, Y. Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records. Hydrol. Earth Syst. Sci. 2021, 25, 1643–1670. [Google Scholar] [CrossRef]
- Jiang, L.; Schneider, R.; Andersen, O.B.; Bauer-Gottwein, P. CryoSat-2 Altimetry Applications over Rivers and Lakes. Water 2017, 9, 211. [Google Scholar] [CrossRef]
- Nielsen, K.; Andersen, O.; Ranndal, H. Validation of Sentinel-3A Based Lake Level over US and Canada. Remote Sens. 2020, 12, 2835. [Google Scholar] [CrossRef]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Xiang, J.; Li, H.; Zhao, J.; Cai, X.; Li, P. Inland water level measurement from spaceborne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. J. Hydrol. 2021, 597, 126312. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; O’Donnell, G.M.; Moore, P.; Kilsby, C.; Fowler, H.; Berry, P.A.M. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol. Process. 2010, 24, 3811–3825. [Google Scholar] [CrossRef]
- Villadsen, H.; Deng, X.; Andersen, O.B.; Stenseng, L.; Nielsen, K.; Knudsen, P. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. J. Hydrol. 2016, 537, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Liao, J.; Zhao, L. A Modified Empirical Retracker for Lake Level Estimation Using Cryosat-2 SARin Data. Water 2018, 10, 1584. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yao, Z.; Wang, R. Evaluation and Validation of CryoSat-2-Derived Water Levels Using In Situ Lake Data from China. Remote Sens. 2019, 11, 899. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Li, H.; Chen, F.; Cai, X. Monitoring Long-Term Lake Level Variations in Middle and Lower Yangtze Basin over 2002–2017 through Integration of Multiple Satellite Altimetry Datasets. Remote Sens. 2020, 12, 1448. [Google Scholar] [CrossRef]
- Morris, C.S.; Gill, S.K. Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J. Geophys. Res. Atmos. 1994, 99, 24527–24539. [Google Scholar] [CrossRef] [Green Version]
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C.; et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2005, 37, 841–871. [Google Scholar] [CrossRef]
- Yang, L.; Xu, Y.; Lin, M.; Ma, C.; Mertikas, S.P.; Hu, W.; Wang, Z.; Mu, B.; Zhou, X. Monitoring the Performance of HY-2B and Jason-2/3 Sea Surface Height via the China Altimetry Calibration Coopera-tion Plan. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- Dandabathula, G.; Rao, S.S. Validation of ICESat-2 Surface Water Level Product ATL13 with Near Real Time Gauge Data. Hydrology 2020, 8, 19. [Google Scholar] [CrossRef]
- Garkoti, A.; Kundapura, S. Deriving water level and discharge estimation using satellite altimetry for Krishna River, Karnataka. Remote Sens. Appl. Soc. Environ. 2021, 22, 100487. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Cartwright, D.E.; Edden, A.C. Corrected Tables of Tidal Harmonics. Geophys. J. Int. 1973, 33, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.M. Deformation induced by polar motion. J. Geophys. Res. Earth Surf. 1985, 90, 9363–9368. [Google Scholar] [CrossRef]
- Boergens, E.; Dettmering, D.; Schwatke, C.; Seitz, F. Treating the Hooking Effect in Satellite Altimetry Data: A Case Study along the Mekong River and Its Tributaries. Remote Sens. 2016, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Lemarquand, N.; Abdallah, H.; Bailly, J.S. The Relevance of GLAS/ICESat Elevation Data for the Monitoring of River Networks. Remote Sens. 2011, 3, 708–720. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Association for Computing Machinery: New York, NY, USA, 1992; pp. 144–152. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Xu, M.; Yang, B.; Hinkel, K.M.; Huang, Y.; Yu, B. Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes. Remote Sens. Environ. 2020, 239, 111643. [Google Scholar] [CrossRef]
Location | No. | Station ID | Lon (°) | Lat (°) |
---|---|---|---|---|
Ontario Lake | 1 | 9052030 | −76.51 | 43.47 |
2 | 9052076 | −78.73 | 43.34 | |
Erie Lake | 3 | 9063053 | −81.28 | 41.76 |
4 | 9063090 | −83.26 | 41.96 | |
Huron Lake | 5 | 9075002 | −82.49 | 43.14 |
6 | 9075014 | −82.64 | 43.85 | |
7 | 9075035 | −83.85 | 43.64 | |
Michigan Lake | 8 | 9087031 | −86.21 | 42.77 |
9 | 9087057 | −87.89 | 43.00 | |
10 | 9087068 | −87.50 | 44.46 | |
Superior Lake | 11 | 9099044 | −89.32 | 46.88 |
12 | 9099090 | −90.34 | 47.75 |
Mission | Duration in This Study | Data Level | Data Type | Repeat Cycle (Day) | Along-Track Interval (m) |
---|---|---|---|---|---|
CryoSat-2 | 2021.1–2022.2 | Level 2 | LRM | 369 (subcycle 30) | 300 |
HY-2B | 2021.1–2022.3 | Level 2 | SDR | 14 | less than 2000 |
HY-2C | 2021.1–2022.3 | Level 2 | SDR | 10 | less than 2000 |
ICESat-2 | 2021.1–2022.3 | ATL13 | ALT13 | 91 | 17 |
Jason-3 | 2021.7–2022.2 | Level 2 | GDR | 10 | 2000–4000 |
Sentinel-3A | 2021.1–2022.3 | Level 2 | SAR | 27 | 300 |
Sentinel-6 | 2021.6–2022.3 | Level 2 | LR | 10 | 300 |
Jason-3, Sentinel-3A, and CryoSat-2 | HY-2B and HY-2C | ICESat-2 | Sentinel-6 | |
---|---|---|---|---|
retracker | ocean | / | / | ocean |
iono | GIM | GIM | / | GIM |
wet | European Center for Medium Range Weather Forecasting (ECMWF) | National Centers for Environmental Prediction (NCEP) | / | ECMWF |
dry | ECMWF | NCEP | / | ECMWF |
solid | Cartwright and Edden [28] | Cartwright and Edden [28] | / | Calculated using Cartwright and Tayler tables |
pole | Wahr [29] | Wahr [29] | / | Calculated using Desai model |
geoid | EGM2008 | EGM2008 | EGM2008 | EGM2008 |
Mission | Water Level | Quality Control |
---|---|---|
CryoSat-2 | height_1_20_ku | / |
HY-2B | alt_20hz range_20hz_ku | surface_type = 1 |
HY-2C | alt_20hz range_20hz_ku | surface_type = 1 |
ICESat-2 | ht_water_surf | / |
Jason-3 | alt_20hz range_20hz_ku | surface_type = 1 qual_alt_1hz_range_ku = 0 |
Sentinel-3A | alt_20_ku range_ocean_20_ku | surface_type_20_ku = 1 |
Sentinel-6 | altitude range_ocean | / |
Lake | Station ID | CryoSat-2 | HY-2B | HY-2C | ICESat-2 | Jason-3 | Sentinel-3A | Sentinel-6 |
---|---|---|---|---|---|---|---|---|
Ontario | 9052030 | / | / | / | 0.10 | / | 0.05 | / |
9052076 | / | 0.04 | / | 0.05 | 0.07 | 0.07 | 0.07 | |
Erie | 9063053 | / | / | 0.10 | 0.07 | 0.04 | 0.12 | 0.04 |
9063090 | / | / | / | 0.09 | / | 0.11 | / | |
Huron | 9075002 | / | / | 0.07 | 0.08 | / | 0.07 | / |
9075014 | 0.09 | / | 0.10 | 0.06 | 0.06 | 0.06 | 0.07 | |
9075035 | / | 0.13 | / | 0.14 | / | / | / | |
Michigan | 9087031 | 0.30 | 0.11 | 0.20 | 0.10 | 0.07 | 0.04 | 0.06 |
9087057 | 0.19 | 0.11 | 0.26 | 0.12 | / | 0.13 | / | |
9087068 | 0.16 | 0.23 | / | 0.10 | 0.14 | / | 0.14 | |
Superior | 9099044 | 0.06 | 0.07 | / | 0.09 | / | 0.12 | / |
9099090 | 0.05 | 0.12 | 0.15 | 0.10 | 0.04 | 0.09 | 0.04 | |
Mean | 0.14 | 0.12 | 0.15 | 0.09 | 0.07 | 0.09 | 0.07 |
Lake | Station ID | CryoSat-2 | HY-2B | HY-2C | ICESat-2 | Jason-3 | Sentinel-3A | Sentinel-6 |
---|---|---|---|---|---|---|---|---|
Ontario | 9052030 | / | / | / | 0.86 | / | 0.97 | / |
9052076 | / | 0.97 | / | 0.94 | 0.69 | 0.97 | 0.87 | |
Erie | 9063053 | / | / | 0.71 | 0.89 | 0.95 | 0.18 | 0.97 |
9063090 | / | / | / | 0.90 | / | 0.40 | / | |
Huron | 9075002 | / | / | 0.92 | 0.74 | / | 0.85 | / |
9075014 | 0.94 | / | 0.83 | 0.95 | 0.96 | 0.99 | 0.98 | |
9075035 | / | 0.87 | / | 0.81 | / | / | ||
Michigan | 9087031 | −0.70 | 0.97 | 0.93 | 0.92 | 0.97 | 0.96 | 0.98 |
9087057 | 0.93 | 0.97 | 0.95 | 0.87 | 1 | / | ||
9087068 | 0.29 | 0.34 | / | 0.88 | 0.99 | / | 0.88 | |
Superior | 9099044 | 0.89 | 0.83 | / | 0.77 | 0.66 | / | |
9099090 | 0.89 | 0.96 | 0.94 | 0.80 | 0.97 | 0.75 | 0.97 | |
Mean | 0.54 | 0.85 | 0.88 | 0.86 | 0.92 | 0.77 | 0.94 |
Lake | Station ID | CryoSat-2 | HY-2B | HY-2C | ICESat-2 | Jason-3 | Sentinel-3A | Sentinel-6 |
---|---|---|---|---|---|---|---|---|
Ontario | 9052030 | / | / | / | 0.08 ± 0.06 | / | −0.03 ± 0.03 | / |
9052076 | / | 0 ± 0.04 | / | 0.01 ± 0.05 | −0.05 ± 0.04 | −0.06 ± 0.03 | −0.06 ± 0.03 | |
Erie | 9063053 | / | / | 0.05 ± 0.09 | 0.04 ± 0.05 | −0.02 ± 0.03 | 0.05 ± 0.11 | −0.03 ± 0.03 |
9063090 | / | / | / | 0.07 ± 0.06 | / | 0 ± 0.11 | / | |
Huron | 9075002 | / | / | 0.00 ± 0.07 | 0.05 ± 0.07 | / | 0.02 ± 0.07 | / |
9075014 | −0.07 ± 0.01 | / | 0.01 ± 0.10 | 0.03 ± 0.05 | −0.04 ± 0.05 | −0.05 ± 0.03 | −0.05 ± 0.04 | |
9075035 | / | −0.10 ± 0.09 | / | 0.07 ± 0.12 | / | / | / | |
Michigan | 9087031 | −0.25 ± 0.03 | 0.10 ± 0.04 | 0.19 ± 0.06 | 0.08 ± 0.05 | 0.05 ± 0.05 | 00.1 ± 0.04 | 0.04 ± 0.05 |
9087057 | −0.17 ± 0.03 | −0.10 ± 0.04 | −0.25 ± 0.05 | 0.06 ± 0.09 | / | / | / | |
9087068 | −0.09 ± 0.12 | 0.05 ± 0.22 | / | 0.03 ± 0.10 | −0.12 ± 0.04 | 0.09 ± 0.03 | −0.08 ± 0.11 | |
Superior | 9099044 | −0.05 ± 0.04 | −0.03 ± 0.07 | / | 0.06 ± 0.07 | / | 0.01 ± 0.14 | / |
9099090 | −0.02 ± 0.05 | 0.11 ± 0.03 | 0.14 ± 0.05 | 0.08 ± 0.05 | 0.02 ± 0.04 | 0 ± 0.09 | 0.01 ± 0.04 | |
Mean | −0.11 ± 0.06 | 0.07 ± 0.10 | 0.10 ± 0.07 | 0.06 ± 0.07 | 0.05 ± 0.04 | 0.03 ± 0.07 | 0.04 ± 0.06 |
Lake | Station ID | CryoSat-2 | HY-2B | HY-2C | ICESat-2 | Jason-3 | Sentinel-3A | Sentinel-6 | total |
---|---|---|---|---|---|---|---|---|---|
Ontario | 9052030 | / | / | / | 18 | / | 13 | / | 33 |
9052076 | / | 19 | / | 22 | 22 | 16 | 28 | 110 | |
Erie | 9063053 | / | / | 58 | 20 | 20 | 12 | 23 | 138 |
9063090 | / | / | / | 14 | / | 15 | / | 30 | |
Huron | 9075002 | / | / | 34 | 9 | / | 13 | / | 44 |
9075014 | 3 | / | 60 | 18 | 19 | 14 | 28 | 149 | |
9075035 | / | 15 | / | 13 | / | / | / | 33 | |
Michigan | 9087031 | 3 | 21 | 33 | 12 | 45 | 11 | 57 | 197 |
9087057 | 6 | 17 | 39 | 11 | / | 2 | / | 81 | |
9087068 | 8 | 35 | / | 13 | 21 | / | 47 | 139 | |
Superior | 9099044 | 10 | 18 | / | 16 | / | 14 | / | 62 |
9099090 | 9 | 15 | 31 | 15 | 22 | 14 | 28 | 144 | |
Mean | 6.5 | 20 | 42.5 | 15 | 25 | 12 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Z.; Chen, P.; Tang, F.; Yang, X.; Wang, R.; Wang, Z. Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes. Sensors 2022, 22, 9718. https://doi.org/10.3390/s22249718
An Z, Chen P, Tang F, Yang X, Wang R, Wang Z. Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes. Sensors. 2022; 22(24):9718. https://doi.org/10.3390/s22249718
Chicago/Turabian StyleAn, Zhiyuan, Peng Chen, Fucai Tang, Xueying Yang, Rong Wang, and Zhihao Wang. 2022. "Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes" Sensors 22, no. 24: 9718. https://doi.org/10.3390/s22249718
APA StyleAn, Z., Chen, P., Tang, F., Yang, X., Wang, R., & Wang, Z. (2022). Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes. Sensors, 22(24), 9718. https://doi.org/10.3390/s22249718