Effect of Source Mispositioning on the Repeatability of 4D Vertical Seismic Profiling Acquired with Distributed Acoustic Sensors
Abstract
:1. Introduction
- Acquisition geometry differences
- Source, receiver mispositioning
- Source/receiver orientation
- Near-surface conditions
- Near-surface variations
- Source/receiver coupling
- Environment
- Soil moisture
- Groundwater level
- Vegetation
- Noise
- Ambient noise
- Shot-generated noise
- Geology
- Shallow gas
- Steep dips
- Fault shadows
2. Case Study 1: 4D DAS VSP for CO2 Geosequestration Monitoring at the Otway International Test Centre
2.1. Experiment Design
2.2. Effect of Mispositioning on Repeatability
3. Case Study 2: Controlled Experiment at Curtin Research Facility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, D.H. Practical Applications of Time-Lapse Seismic Data; Society of Exploration Geophysicists: Houston, TX, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Lumley, D. 4D seismic monitoring of CO2 sequestration. Lead. Edge 2010, 29, 150–155. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press (Taylor and Francis): Boca Raton, FL, USA, 2017; pp. 1–440. [Google Scholar] [CrossRef]
- Harvey, S.; Hopkins, J.; Kuehl, H.; O’Brien, S.; Mateeva, A. Quest CCS facility: Time-lapse seismic campaigns. Int. J. Greenh. Gas Control 2022, 117, 103665. [Google Scholar] [CrossRef]
- Götz, J.; Lüth, S.; Henninges, J.; Reinsch, T. Using a fibre optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling at the Ketzin CO2 storage site. In Proceedings of the 77th EAGE Conference and Exhibition 2015, Madrid, Spain, 1–4 June 2015; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Pevzner, R.; Isaenkov, R.; Yavuz, S.; Yurikov, A.; Tertyshnikov, K.; Shashkin, P.; Gurevich, B.; Correa, J.; Glubokovskikh, S.; Wood, T. Seismic monitoring of a small CO2 injection using a multi-well DAS array: Operations and initial results of Stage 3 of the CO2CRC Otway project. Int. J. Greenh. Gas Control 2021, 110, 103437. [Google Scholar] [CrossRef]
- Bacci, V.O.; O’Brien, S.; Frank, J.; Anderson, M. Using a walk-away DAS time-lapse VSP for CO2 plume monitoring at the Quest CCS Project. CSEG Rec. 2017, 42, 18–21. Available online: https://csegrecorder.com/articles/view/using-a-walk-away-das-time-lapse-vsp-for-co2-sub-plume-monitoring (accessed on 8 December 2022).
- Tertyshnikov, K.; Pevzner, R.; Freifeld, B.; Ricard, L.; Avijegon, A. DAS VSP for Characterisation and Monitoring of the CO2 Shallow Release Site: CSIRO In-Situ Laboratory Case Study. In Proceedings of the Fifth EAGE Workshop on Borehole Geophysics, The Hague, The Netherlands, 18–20 November 2019; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Morice, S.; Ronen, S.; Canter, P.; Welker, K.; Clark, D. The impact of positioning differences on 4D repeatability. In SEG Technical Program Expanded Abstracts 2000; Society of Exploration Geophysicists: Houston, TX, USA, 2000; pp. 1611–1614. [Google Scholar]
- Jervis, M.; Bakulin, A.; Burnstad, R.; Berron, C.; Forgues, E. Suitability of vibrators for time-lapse monitoring in the Middle East. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Houston, TX, USA, 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Bakulin, A.; Smith, R.; Jervis, M.; Burnstad, R. Use of early arrivals for 4D analysis and processing of buried receiver data on land. In SEG Technical Program Expanded Abstracts 2015; Society of Exploration Geophysicists: Houston, TX, USA, 2015; pp. 5493–5497. [Google Scholar] [CrossRef]
- Smith, R.; Bakulin, A.; Jervis, M.; Hemyari, E.; Alramadhan, A.; Erickson, K. 4D Seismic Monitoring of a CO2-EOR Demonstration Project in a Desert Environment: Acquisition, Processing and Initial Results. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar] [CrossRef]
- Eiken, O.; Haugen, G.U.; Schonewille, M.; Duijndam, A. A proven method for acquiring highly repeatable towed streamer seismic data. Geophysics 2003, 68, 1303–1309. [Google Scholar] [CrossRef]
- Smit, F.; Brain, J.; Watt, K. Repeatability monitoring during marine 4D streamer acquisition. In Proceedings of the 67th EAGE Conference & Exhibition, Madrid, Spain, 13–16 June 2005; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2005; p. cp-1-00588. [Google Scholar] [CrossRef]
- Brechet, E.; Sadeghi, E.; Giovannini, A.; Hubans, C. Seismic monitoring combining nodes and streamer data on Dalia Field. In Proceedings of the 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011, Vienna, Austria, 23–27 May 2011; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2011; p. cp-238-00289. [Google Scholar] [CrossRef]
- Landro, M. Repeatability issues of 3-D VSP data. Geophysics 1999, 64, 1673–1679. [Google Scholar] [CrossRef]
- Pevzner, R.; Urosevic, M.; Nakanishi, S. Applicability of Zero-offset and Offset VSP for Time-lapse monitoring—CO2CRC Otway Project Case Study. In Proceedings of the 72nd EAGE Conference & Exhibition incorporating SPE EUROPEC 2010, Barcelona, Spain, 14–17 June 2010; EAGE: Barcelona, Spain, 2010; p. cp-161-00586. [Google Scholar] [CrossRef] [Green Version]
- AlNasser, H.; Pevzner, R.; Tertyshnikov, K.V.; Popik, D.; Urosevic, M. Application of 4D VSP for Monitoring Of Small-Scale Supercritical CO2 Injection: Stage 2C of CO2CRC Otway Project Case Study. In Proceedings of the Fourth EAGE Borehole Geophysics Workshop, Abu Dhabi, United Arab Emirates, 19–22 November 2017. [Google Scholar] [CrossRef]
- Correa, J.; Egorov, A.; Tertyshnikov, K.; Bona, A.; Pevzner, R.; Dean, T.; Freifeld, B.; Marshall, S. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets—A CO2CRC Otway Project data example. Lead. Edge 2017, 36, 994a1–994a7. [Google Scholar] [CrossRef] [Green Version]
- Correa, J.; Pevzner, R.; Bona, A.; Tertyshnikov, K.; Freifeld, B.; Robertson, M.; Daley, T. 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: A case study from the CO2CRC Otway Project. Interpretation 2019, 7, SA11–SA19. [Google Scholar] [CrossRef]
- Dou, S.; Ajo-Franklin, J.; Daley, T.; Robertson, M.; Wood, T.; Freifeld, B.; Pevzner, R.; Correa, J.; Tertyshnikov, K.; Urosevic, M. Surface orbital vibrator (SOV) and fiber-optic DAS: Field demonstration of economical, continuous-land seismic time-lapse monitoring from the Australian CO2CRC Otway site. In SEG Technical Program Expanded Abstracts 2016; Society of Exploration Geophysicists: Houston, TX, USA, 2016; pp. 5552–5556. [Google Scholar] [CrossRef]
- Yavuz, S.; Isaenkov, R.; Pevzner, R.; Gurevich, B.; Tertyshnikov, K.; Yurikov, A.; Correa, J.; Wood, T.; Freifeld, B. Processing of multi-well offset vertical seismic profile data acquired with distributed acoustic sensors and surface orbital vibrators: Stage 3 of the CO2CRC Otway Project case study. Geophys. Prospect. 2021, 69, 1664–1677. [Google Scholar] [CrossRef]
- Isaenkov, R.; Pevzner, R.; Glubokovskikh, S.; Yavuz, S.; Yurikov, A.; Tertyshnikov, K.; Gurevich, B.; Correa, J.; Wood, T.; Freifeld, B.; et al. An automated system for continuous monitoring of CO2 geosequestration using multi-well offset VSP with permanent seismic sources and receivers: Stage 3 of the CO2CRC Otway Project. Int. J. Greenh. Gas Control 2021, 108, 103317. [Google Scholar] [CrossRef]
- Yurikov, A.; Tertyshnikov, K.; Isaenkov, R.; Sidenko, E.; Yavuz, S.; Glubokovskikh, S.; Barraclough, P.; Shashkin, P.; Pevzner, R. Multiwell 3D distributed acoustic sensing vertical seismic profile imaging with engineered fibers: CO2CRC Otway Project case study. Geophysics 2021, 86, D241–D248. [Google Scholar] [CrossRef]
- Jenkins, C.; Bagheri, M.; Barraclough, P.; Dance, T.; Ennis-King, J.; Freifeld, B.; Glubokovskikh, S.; Gunning, J.; LaForce, T.; Marshall, S. Fit for purpose monitoring-a progress report on the CO2CRC Otway Stage 3 project. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference Melbourne, Melbourne, VIC, Australia, 21–26 October 2018; pp. 21–26. [Google Scholar]
- Kragh, E.; Christie, P. Seismic repeatability, normalized rms, and predictability. Lead. Edge 2002, 21, 640–647. [Google Scholar] [CrossRef]
- Al Jabri, Y. Land Seismic Repeatability Prediction from Near-Surface Investigations at Naylor Field, Otway. Ph.D. Thesis, Curtin University, Bentley, Australia, 2011. Available online: http://hdl.handle.net/20.500.11937/2372 (accessed on 8 December 2022).
Parameter | Otway M6 | Otway M7 | NGL |
---|---|---|---|
Survey date | March 2020 | January 2021 | May 2021 |
Source | Vibroseis INOVA UniVib 26,000 lbs | Vibroseis INOVA UniVib 26,000 lbs | Vibroseis INOVA UniVib 26,000 lbs |
Sweep | Linear 6–150 Hz | Linear 6–150 Hz | Linear 6–150 Hz |
Number of Source Positions | 4084 | 3085 | 76 |
Shot spacing (m) | 15 | 15 | 0.5–5 |
Fiber optic cable installation | Cemented behind the casing | Cemented behind the casing | Cemented behind the casing |
Type of fibre | Constellation | Constellation | Single mode |
DAS interrogator | Silixa iDAS v3 | Silixa iDAS v3 | Silixa iDAS v2 |
Spacing between virtual receivers (m) | 5 | 5 | 1 |
Well depth (m) | 1600 | 1600 | 900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaenkov, R.; Tertyshnikov, K.; Yurikov, A.; Shashkin, P.; Pevzner, R. Effect of Source Mispositioning on the Repeatability of 4D Vertical Seismic Profiling Acquired with Distributed Acoustic Sensors. Sensors 2022, 22, 9742. https://doi.org/10.3390/s22249742
Isaenkov R, Tertyshnikov K, Yurikov A, Shashkin P, Pevzner R. Effect of Source Mispositioning on the Repeatability of 4D Vertical Seismic Profiling Acquired with Distributed Acoustic Sensors. Sensors. 2022; 22(24):9742. https://doi.org/10.3390/s22249742
Chicago/Turabian StyleIsaenkov, Roman, Konstantin Tertyshnikov, Alexey Yurikov, Pavel Shashkin, and Roman Pevzner. 2022. "Effect of Source Mispositioning on the Repeatability of 4D Vertical Seismic Profiling Acquired with Distributed Acoustic Sensors" Sensors 22, no. 24: 9742. https://doi.org/10.3390/s22249742
APA StyleIsaenkov, R., Tertyshnikov, K., Yurikov, A., Shashkin, P., & Pevzner, R. (2022). Effect of Source Mispositioning on the Repeatability of 4D Vertical Seismic Profiling Acquired with Distributed Acoustic Sensors. Sensors, 22(24), 9742. https://doi.org/10.3390/s22249742