The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press—Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. 1RM Measurement Protocol
2.3. Protocol
2.4. Muscle Activity Maesurement
2.5. Data Analysis
3. Results
- (1)
- Anterior deltoid muscle: F (3, N = 80) = 23.71; p = 0.0001; W = 0.5647 (large).
- (2)
- Upper trapezius muscle: F (3, N = 80) = 13.65; p = 0.0034; W = 0.3250 (moderate).
- (3)
- Serratus anterior muscle: F (3, N = 80) = 20.23; p = 0.0001; W = 0.4817 (moderate).
- (4)
- Lower trapezius muscle: F (3, N = 80) = 20.14; p = 0.0001; W = 0.4795 (moderate).
- (5)
- Posterior deltoid muscle: F (3, N = 80) = 25.37; p = 0.0001; W = 0.6040 (large).
- (6)
- Spinal erector muscle—thoracis part: F (3, N = 80) = 30.39; p = 0.0001; W = 0.7236 (large).
3.1. Anterior and Posterior Deltoid Muscles
3.2. Lower and Upper Trapezius Muscles
3.3. Serratus Anterior and Thoracis Part of Spinal Erector Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stronska, K.; Bojacz, P.; Golas, A.; Maszczyk, A.; Zajac, A.; Stastny, P. Muscle activity during the incline shoulder press in relation to the exercise intensity. Acta Gymnica 2018, 48, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Maszczyk, A.; Wilk, M.; Krzysztofik, M.; Gepfert, M.; Zając, A.; Petr, M.; Stastny, P. The effects of resistance training experience on movement characteristics in the bench press exercise. Biol. Sport 2020, 37, 79–83. [Google Scholar] [CrossRef]
- Waller, M.; Piper, T.; Miller, J. Overhead pressing power/Strength movements. Strength Cond. J. 2009, 31, 39–49. [Google Scholar] [CrossRef]
- Ichihashi, N.; Ibuki, S.; Otsuka, N.; Takashima, S.; Matsumura, A. Kinematic characteristics of the scapula and clavicle during military press exercise and shoulder flexion. J. Shoulder Elb. Surg. 2014, 23, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Riek, L.M.; Tome, J.; Ludewig, P.M.; Nawoczenski, D.A. Improving Shoulder Kinematics in Individuals With Paraplegia: Comparison Across Circuit Resistance Training Exercises and Modifications in Hand Position. Phys. Ther. 2016, 96, 1006–1017. [Google Scholar] [CrossRef] [Green Version]
- Escamilla, R.F.; Yamashiro, K.; Paulos, L.; Andrews, J.R. Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med. 2009, 39, 663–685. [Google Scholar] [CrossRef]
- Paoli, A.; Marcolin, G.; Petrone, N. Influence of different ranges of motion on selective recruitment of shoulder muscles in the sitting military press: An electromyographic study. J. Strength Cond. Res. 2010, 24, 1578–1583. [Google Scholar] [CrossRef]
- Dicus, J.R.; Holmstrup, M.E.; Shuler, K.T.; Rice, T.T.; Raybuck, S.D.; Siddons, C.A. Stability of Resistance Training Implement alters EMG Activity during the Overhead Press. Int. J. Exerc. Sci. 2018, 11, 708–716. [Google Scholar]
- Andersen, C.H.; Zebis, M.K.; Saervoll, C.; Sundstrup, E.; Jakobsen, M.D.; Sjøgaard, G.; Andersen, L.L. Scapular muscle activity from selected strengthening exercises performed at low and high intensities. J. Strength Cond. Res. 2012, 26, 2408–2416. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Effects of body position and loading modality on muscle activity and strength in shoulder presses. J. Strength Cond. Res. 2013, 27, 1824–1831. [Google Scholar] [CrossRef]
- Kohler, J.M.; Flanagan, S.P.; Whiting, W.C. Muscle activation patterns while lifting stable and unstable loads on stable and unstable surfaces. J. Strength Cond. Res. 2010, 24, 313–321. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Solstad, T.E.J.; Cumming, K.T.; Andersen, V. The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice- and Resistance-Trained Men. Int. J. Environ. Res. Public Health 2021, 18, 6444. [Google Scholar] [CrossRef]
- Green, C.M.; Comfort, P. The Affect of Grip Width on Bench Press Performance and Risk of Injury. Strength Cond. J. 2007, 29, 10–14. [Google Scholar] [CrossRef]
- Büll, M.L.; Vitti, M.; Freitas, V.; Rosa, G.J. Electromyographic validation of the trapezius and serratus anterior muscles in military press exercises with open and middle grip. Electromyogr. Clin. Neurophysiol. 2001, 41, 203–207. [Google Scholar]
- Soriano, M.A.; Suchomel, T.J.; Comfort, P. Weightlifting Overhead Pressing Derivatives: A Review of the Literature. Sports Med. 2019, 49, 867–885. [Google Scholar] [CrossRef] [Green Version]
- Meigh, N.J.; Keogh, J.W.L.; Schram, B.; Hing, W.A. Kettlebell training in clinical practice: A scoping review. BMC Sports Sci. Med. Rehabil. 2019, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Hendricks, D.; Dannen, M.; Arnold, A.; Lawrence, M. Activity of Shoulder Stabilizers and Prime Movers During an Unstable Overhead Press. J. Strength Cond. Res. 2018, 34, 73–78. [Google Scholar] [CrossRef]
- Gołaś, A.; Maszczyk, A.; Pietraszewski, P.; Wilk, M.; Stastny, P.; Strońska, K.; Studencki, M.; Zając, A. Muscular activity patterns of female and male athletes during the flat bench press. Biol. Sport 2018, 35, 175–179. [Google Scholar] [CrossRef]
- Zwerus, E.L.; Willigenburg, N.W.; Scholtes, V.A.; Somford, M.P.; Eygendaal, D.; van den Bekerom, M.P. Normative values and affecting factors for the elbow range of motion. Shoulder Elb. 2019, 11, 215–224. [Google Scholar] [CrossRef]
- Stubbs, N.; Fernandez, J.; Glenn, W. Normative data on joint ranges of motion of 25- to 54-year-old males. Int. J. Ind. Ergon. 1993, 12, 265–272. [Google Scholar] [CrossRef]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Chen, H.T.; Wu, H.J.; Chen, Y.J.; Ho, S.Y.; Chung, Y.C. Effects of 8-week kettlebell training on body composition, muscle strength, pulmonary function, and chronic low-grade inflammation in elderly women with sarcopenia. Exp. Gerontol. 2018, 112, 112–118. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sports Biomech. 2021, 20, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Schick, E.E.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Tran, T.T.; Uribe, B.P. A comparison of muscle activation between a Smith machine and free weight bench press. J. Strength Cond. Res. 2010, 24, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Petushek, E.J.; Fauth, M.L.; Garceau, L.R. EMG analysis of concurrent activation potentiation. Med. Sci. Sports Exerc. 2010, 42, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Jung, J.; Yu, J. Comparison of trunk muscle activity during bridging exercises using a sling in patients with low back pain. J. Sports Sci. Med. 2012, 11, 510–515. [Google Scholar]
- Stastny, P.; Lehnert, M.; Zaatar, A.M.; Svoboda, Z.; Xaverova, Z. Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges? J. Strength Cond. Res. 2015, 29, 3177–3187. [Google Scholar] [CrossRef]
Group | Age [Years] | Body Mass [kg] | Body Height [cm] | Experience with Resistance Training [Months] | 70% 1RM Kettlebell Overhead Press | 70% 1RM Dumbbell Overhead Press |
---|---|---|---|---|---|---|
N = 20 (male) | 24.9 ± 2 | 85.5 ± 38.4 | 181.8 ± 6.5 | 19 ± 4.04 | 17.5 ± 2.8 | 18.3 ± 2.7 |
D-70% 1RM | D-6kg | K-70% 1RM | K-6kg | p-Value |
---|---|---|---|---|
Anterior deltoid muscle—Median [Q1; Q3] | ||||
84 [77.25; 100] | 56.5 [41; 62.25] | 100 [77; 100] | 57 [41.5; 74.5] | D-70%1RM vs. D-6kg (p = 0.0059) D-70%1RM vs. K-6kg (p = 0.0405) K-70%1RM vs. D-6kg (p = 0.0003) K-70%1RM vs. K-6kg (p = 0.0034) |
Posterior deltoid muscle—Median [Q1; Q3] | ||||
93 [81.25; 100] | 55 [44.5; 62] | 100 [85.75; 100] | 56 [44.5; 71.75] | D-70%1RM vs. D-6kg (p = 0.0026) D-70%1RM vs. K-6kg (p = 0.0204) K-70%1RM vs. D-6kg (p = 0.0002) K-70%1RM vs. K-6kg (p = 0.0026) |
D-70% 1RM | D-6kg | K-70% 1RM | K-6kg | p-Value |
---|---|---|---|---|
Upper trapezius muscle—Median [Q1; Q3] | ||||
96.5 [91.25; 100] | 90.5 [68; 97] | 98 [92.25; 100] | 87.5 [54.5; 93.75] | D-70%1RM vs. K-6kg (p = 0.0126) K-70%1RM vs. K-6kg (p = 0.0204) |
Lower trapezius muscle—Median [Q1; Q3] | ||||
80.5 [65.75; 89] | 64.5 [52.25; 72.75] | 100 [90.25; 100] | 71 [54; 83.75] | K-70%1RM vs. D-6kg (p = 0.0001) K-70%1RM vs. K-6kg (p = 0.0076) |
D-70% 1RM | D-6kg | K-70% 1RM | K-6kg | p-Value |
---|---|---|---|---|
Serratus anterior muscle—Median [Q1; Q3] | ||||
77 [70; 88.25] | 58 [37.5; 66.25] | 100 [95.5; 100] | 68.5 [51.25; 79.75] | D-70%1RM vs. D-6kg (p = 0.0204) K-70%1RM vs. D-6kg (p = 0.0001) |
Spinal erector- thoracis muscle—Median [Q1; Q3] | ||||
95.5 [80.5; 99.5] | 80.5 [69.25; 91.25] | 100 [95; 100] | 81.5 [72.5; 88.25] | D-70%1RM vs. D-6kg (p = 0.0045) D-70%1RM vs. K-6kg (p = 0.0045) K-70%1RM vs. D-6kg (p = 0.0001) K-70%1RM vs. K-6kg (p = 0.0001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażkiewicz, M.; Hadamus, A. The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press—Preliminary Report. Sensors 2022, 22, 9762. https://doi.org/10.3390/s22249762
Błażkiewicz M, Hadamus A. The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press—Preliminary Report. Sensors. 2022; 22(24):9762. https://doi.org/10.3390/s22249762
Chicago/Turabian StyleBłażkiewicz, Michalina, and Anna Hadamus. 2022. "The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press—Preliminary Report" Sensors 22, no. 24: 9762. https://doi.org/10.3390/s22249762
APA StyleBłażkiewicz, M., & Hadamus, A. (2022). The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press—Preliminary Report. Sensors, 22(24), 9762. https://doi.org/10.3390/s22249762