Coherent Signal DOA Estimation for MIMO Radar under Composite Background of Strong Interference and Non-Uniform Noise
Abstract
:1. Introduction
2. MIMO Radar Signal Model
3. Coherent Signal DOA Estimation in A Composite Background
3.1. Fixed Projection Blocking Algorithm Rejects Interference
3.2. Toeplitz Matrix Reconstruction
3.3. PM Algorithm DOA Estimation
4. Basic Steps of the Algorithm
- Calculate the data covariance matrix of the array element output vector ;
- The covariance matrix is decomposed to obtain the interference subspace , the signal subspace , and the noise subspace ;
- To eliminate interference, construct a fixed projection blocking matrix using Equation (11);
- Pre-processing the received signal by Equation (13) gives ;
- The covariance matrix is reconstructed according to Equation (18) and replaced to obtain the matrix ;
- After partitioning the matrix , construct the linear operator according to Equation (20);
- The DOA is obtained by minimizing the cost function x using Equation (21).
5. Algorithm Performance Analysis
5.1. Source Overload Capacity Analysis
5.2. Algorithmic Complexity Analysis
6. Simulation Results and Analysis
6.1. Spatial Spectrum Estimation
6.2. Comparative Error Analysis of Different Algorithms
6.3. Comparative Error Analysis with Different Numbers of Interference Sources
6.4. Algorithm Robustness Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salari, S.; Chan, F.; Chan, T. DOA Estimation Using Compressive Sampling-Based Sensors in the Presence of Interference. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4395–4405. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.; Tang, M. Direction of Arrival Estimation in Elliptical Models via Sparse Penalized Likelihood Approach. Sensors 2019, 19, 2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Liu, S.; Zhao, D. DOA Estimation of Unknown Emitter Signal Based on Time Reversal and Coprime Array. Sensors 2019, 19, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Song, Y.; Chen, C. Height Measurement with Meter Wave Polarimetric MIMO Radar: Signal Model and MUSIC-like Algorithm. IEEE Signal Process. 2021, 190, 1872–7557. [Google Scholar] [CrossRef]
- Sun, K.; Liu, Y.; Meng, H.; Wang, X. Adaptive Sparse Representation for Source Localization with Gain/Phase Errors. Sensors 2011, 11, 4780–4793. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Hu, Z.; Li, D. A Sorting Algorithm for Multiple Frequency-Hopping Signals in Complex Electromagnetic Environments. Circuits Syst. Signal Process. 2020, 39, 245–267. [Google Scholar] [CrossRef]
- Nicola, M.; Falco, G.; Morales Ferre, R.; Lohan, E.-S.; de la Fuente, A.; Falletti, E. Collaborative Solutions for Interference Management in GNSS-Based Aircraft Navigation. Sensors 2020, 20, 4085. [Google Scholar] [CrossRef]
- Muhammad, M.; Li, M.; Abbasi, Q.; Goh, C.; Imran, M.A. A Covariance Matrix Reconstruction Approach for Single Snapshot Direction of Arrival Estimation. Sensors 2022, 22, 3096. [Google Scholar] [CrossRef]
- Zhang, C.; Han, Y.; Zhang, P. Research on Modern Radar Emitter Modelling Technique under Complex Electromagnetic Environment. J. Eng. 2019, 20, 7134–7138. [Google Scholar] [CrossRef]
- Yao, Y.; Lei, H.; He, W. A-CRNN-Based Method for Coherent DOA Estimation with Unknown Source Number. Sensors 2020, 20, 2296. [Google Scholar] [CrossRef]
- Gui, L.; Xiao, F.; Zhou, Y.; Shu, F.; Val, T. Connectivity Based DV-Hop Localization for Internet of Things. IEEE Trans. Veh. Technol. 2020, 69, 8949–8958. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, C.; Liao, G. Direction-of-Arrival Estimation in the Presence of Unknown Nonuniform Noise Fields. IEEE J. Ocean. Eng. 2006, 31, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Liao, B.; Chan, S.; Huang, L. Iterative Methods for Subspace and DOA Estimation in Nonuniform Noise. IEEE Trans. Signal Process. 2016, 64, 3008–3020. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Wan, L. Unitary Low-Rank Matrix Decomposition for DOA Estimation in Nonuniform Noise. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 19–21 November 2018. [Google Scholar]
- Wei, J.; Cao, K.; Ning, F. DOA Estimation Algorithm for Sparse Representation under Nonstationary Noise. J. Beijing Univ. Posts Telecommun. 2020, 43, 116–121. [Google Scholar]
- Qi, C.; Chen, Z.; Wang, Y. DOA Estimation for Coherent Sources in Unknown Nonuniform Noise Fields. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1195–1204. [Google Scholar]
- Zheng, C.; Fang, Y.; Li, J. Sparse Representation Based Direction-of-Arrival Estimation in Nonuniform Noise via Tail Minimisation. IET Radar Sonar Navig. 2021, 15, 788–795. [Google Scholar] [CrossRef]
- Wan, J.; Liao, B.; Guo, C. Spatial Smoothing Based Methods for Direction-of-Arrival Estimation of Coherent Signals in Nonuniform Noise. Digit. Signal Process. 2017, 67, 116–122. [Google Scholar] [CrossRef]
- Tian, Y.; Liang, G.; Fu, J. Direction Estimation of Coherent Signals Based on the Symmetry of Uniform Linear Array. Proc. Meet. Acoust. 2019, 33, 1–9. [Google Scholar]
- Chai, L.; Luo, J. A Combined Algorithm Both for Restraining Intensive Interferences and for Weak Signals DOA Estimation. In Proceedings of the ICMMT 4th International Conference on, Proceedings Microwave and Millimeter Wave Technology, Beijing, China, 18–21 August 2004; pp. 243–246. [Google Scholar]
- Chai, L.; Luo, J. A New Method for DOA Estimation of Weak Signals under Strong Interference Conditions. J. Electron. Inf. 2005, 27, 1517–1520. [Google Scholar]
- Su, C.; Luo, J. A Uniform Circular Array Subarray Interference Suppression DOA Estimation Algorithm. Signal Process. 2010, 26, 1355–1360. [Google Scholar]
- Gong, J.; Lou, S. DOA Estimation Method of Weak Sources for An Array Antenna under Strong Interference Conditions. Int. J. Electron. 2018, 105, 1931–1944. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Long, Y. Wideband Sparse Spatial Spectrum Estimation Using Matrix Filter with Nulling in A Strong Interference Environment. J. Acoust. Soc. Am. 2018, 143, 3891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Guo, Y.; Gong, J. DOA Estimation Method for Coherent Weak Sources under Strong Interference Background. Mod. Radar 2012, 34, 45–49. [Google Scholar]
- Al-Ardi, E.; Shubair, R.; Al-Mualla, M. Computationally Efficient High-Resolution DOA Estimation in Multipath Environment. Electron. Lett. 2004, 40, 908–910. [Google Scholar] [CrossRef]
- Liu, C.; Wu, R.; He, Z. Modeling and Analyzing Interference Signal in A Complex Electromagnetic Environment. EURASIP J. Wirel. Commun. Netw. 2016, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wan, F.; Duvail, F.; Savatier, X. Electromagnetic Interference Detection Method to Increase The Immunity of A Icrocontroller-Based System in A Complex Electromagnetic Environment. Sci. Meas. Technol. 2012, 6, 254–260. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, Y.; Ren, S.; Chen, Z. A Novel Noncircular MUSIC Algorithm Based on the Concept of the Difference and Sum Coarray. Sensors 2018, 18, 344. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Zhao, J.; Dong, X.D.; Xue, Q.T.; Cai, R.H. DOA Tracking Based on Unscented Transform Multi-Bernoulli Filter in Impulse Noise Environment. Sensors 2019, 19, 4031. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Liu, D. An Enhanced Spatial Smoothing Algorithm for Coherent Signals DOA Estimation. Eng. Comput. 2021, 39, 574–586. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Hu, G.; Zhou, H.; Zheng, G. Coherent Signal DOA Estimation for MIMO Radar under Composite Background of Strong Interference and Non-Uniform Noise. Sensors 2022, 22, 9833. https://doi.org/10.3390/s22249833
Lin B, Hu G, Zhou H, Zheng G. Coherent Signal DOA Estimation for MIMO Radar under Composite Background of Strong Interference and Non-Uniform Noise. Sensors. 2022; 22(24):9833. https://doi.org/10.3390/s22249833
Chicago/Turabian StyleLin, Bin, Guoping Hu, Hao Zhou, and Guimei Zheng. 2022. "Coherent Signal DOA Estimation for MIMO Radar under Composite Background of Strong Interference and Non-Uniform Noise" Sensors 22, no. 24: 9833. https://doi.org/10.3390/s22249833
APA StyleLin, B., Hu, G., Zhou, H., & Zheng, G. (2022). Coherent Signal DOA Estimation for MIMO Radar under Composite Background of Strong Interference and Non-Uniform Noise. Sensors, 22(24), 9833. https://doi.org/10.3390/s22249833