sEMG-Based Continuous Hand Action Prediction by Using Key State Transition and Model Pruning
Abstract
:1. Introduction
- A new supplement to the research of sEMG-based motion intention recognition.
- A modified Viterbi algorithm of GMM-HMMs which can build long-term memory for the prediction process.
- A Model pruning which can expand the number of participating hand gestures for continuous multihand action prediction.
2. Methods
2.1. GMM-HMMs
2.2. Key State Transition and the Marginalization of Sliding Windows
2.3. Model Pruning
Algorithm 1: Model Pruning |
3. Materials and Experimental Methods
3.1. Experiment Setup
3.2. Data Preprocessing
3.3. Training and Prediction Setup
4. Results and Discussion
4.1. Estimation of Continuous Two-Hand Actions
4.1.1. Validation on the Setting of Key State Transition
4.1.2. Validation on the Marginalization of Sliding Windows
4.1.3. Comparison with Other Methods
4.2. Estimation of Continuous Four-Hand Actions
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Zhang, J.; Wang, L.; Zhang, M.; Bao, S. A review of the key technologies for sEMG-based human-robot interaction systems. Biomed. Signal Process. Control 2020, 62, 102074. [Google Scholar] [CrossRef]
- Kim, K.; Colgate, J. Haptic Feedback Enhances Grip Force Control of sEMG-Controlled Prosthetic Hands in Targeted Reinnervation Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Sharma, S. Single-channel surface electromyography (sEMG) based control of a multi-functional prosthetic hand. Instrum. Sci. Technol. 2021, 49, 428–444. [Google Scholar] [CrossRef]
- Vonsevych, K.; Mrozowski, J.; Awrejcewicz, J. Fingers Movements Control System Based on Artificial Neural Network Model. Radioelectron. Commun. Syst. 2019, 62, 23–33. [Google Scholar] [CrossRef]
- Ding, Q.; Xiong, A.; Zhao, X.; Han, J. A Review on Researches and Applications of sEMG-based Motion Intent Recognition Methods. Acta Autom. Sin. 2016. [Google Scholar]
- Liu, J. Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control. Med. Eng. Phys. 2015, 37, 424–430. [Google Scholar] [CrossRef]
- Rabin, N.; Kahlon, M.; Malayev, S.; Ratnovsky, A. Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques. Expert Syst. Appl. 2020, 149, 113281. [Google Scholar] [CrossRef]
- Pancholi, S.; Joshi, A. Electromyography-Based Hand Gesture Recognition System for Upper Limb Amputees. IEEE Sens. Lett. 2019, 3, 5500304. [Google Scholar] [CrossRef]
- Tam, S.; Boukadoum, M.; Campeau-Lecours, A.; Gosselin, B. A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 232–243. [Google Scholar] [CrossRef]
- Hooda, N.; Das, R.; Kumar, N. Fusion of EEG and EMG signals for classification of unilateral foot movements. Biomed. Signal Process. Control 2020, 60, 101990. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Yang, M.; Chen, S. PSO-SVM-based gait phase classification during human walking on unstructured terrains: Application in lower-limb exoskeleton. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 7144–7154. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, B.; Maeng, J.; Kim, D. sEMG-signal and IMU sensor-based gait sub-phase detection and prediction using a user-adaptive classifier. Med. Eng. Phys. 2019, 69, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Vijayvargiya, A.; Gupta, V.; Kumar, R.; Dey, N. A Hybrid WD-EEMD sEMG Feature Extraction Technique for Lower Limb Activity Recognition. IEEE Sens. J. 2021, 21, 20431–20439. [Google Scholar] [CrossRef]
- Narayan, Y. Direct comparison of SVM and LR classifier for SEMG signal classification using TFD features. Mater. Today Proc. 2021, 45, 3543–3546. [Google Scholar] [CrossRef]
- Liu, J.; He, J.; Sheng, X.; Zhang, D.; Zhu, X. A new feature extraction method based on autoregressive power spectrum for improving sEMG classification. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Yang, J.; Pan, J.; Li, J. sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017. [Google Scholar]
- Atzori, M.; Cognolato, M. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Front. Neurorobot. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, F.; Dai, L. sEMG-Based Identification of Hand Motion Commands Using Wavelet Neural Network Combined With Discrete Wavelet Transform. IEEE Trans. Ind. Electron. 2016, 63, 1923–1934. [Google Scholar] [CrossRef]
- Shen, S.; Gu, K. Movements Classification of Multi-Channel sEMG Based on CNN and Stacking Ensemble Learning. IEEE Access 2019, 7, 137489–137500. [Google Scholar] [CrossRef]
- Atzori, M.; Muller, H. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Hu, Y.; Wong, Y. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE 2018, 13, e0206049. [Google Scholar] [CrossRef] [Green Version]
- Artemiadis, P.; Kyriakopoulos, K. EMG-Based Control of a Robot Arm Using Low-Dimensional Embeddings. IEEE Trans. Robot. 2010, 26, 393–398. [Google Scholar] [CrossRef]
- Khoshdel, V.; Akbarzadeh, A. sEMG-based impedance control for lower-limb rehabilitation robot. Intell. Serv. Robot. 2018, 11, 97–108. [Google Scholar] [CrossRef]
- Meattini, R.; Bernardini, A. sEMG-Based Minimally Supervised Regression Using Soft-DTW Neural Networks for Robot Hand Grasping Control. IEEE Robot. Autom. Lett. 2022, 7, 10144–10151. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B. sEMG-Based Joint Force Control for an Upper-Limb Power-Assist Exoskeleton Robot. IEEE J. Biomed. Health Inform. 2014, 18, 1043–1050. [Google Scholar] [PubMed]
- Han, J.; Ding, Q.; Xiong, A.; Zhao, X. A State-Space EMG Model for the Estimation of Continuous Joint Movements. IEEE Trans. Ind. Electron. 2015, 62, 4267–4275. [Google Scholar] [CrossRef]
- Liu, J.; Kang, S.; Xu, D.; Ren, Y.; Lee, S.; Zhang, L. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors. Front. Neurosci. 2017, 11, 480. [Google Scholar] [CrossRef] [Green Version]
- Durandau, G.; Farina, D.; Sartori, M. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. J. Neuroeng. Rehabil. 2019, 16, 91. [Google Scholar] [CrossRef]
- Tamburella, F.; Tagliamonte, N.; Molinari, M. Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton: Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1157–1167. [Google Scholar] [CrossRef]
- Sartori, M.; Lloyd, D.; Farina, D. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies. IEEE Trans. Biomed. Eng. 2016, 63, 879–893. [Google Scholar] [CrossRef] [Green Version]
- Ao, D.; Song, R.; Gao, J. Movement Performance of Human–Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1125–1134. [Google Scholar] [CrossRef]
- Durandau, G.; Rampeltshammer, W.F.; Sartori, M. Neuromechanical Model-Based Adaptive Control of Bilateral Ankle Exoskeletons: Biological Joint Torque and Electromyogram Reduction Across Walking Conditions. IEEE Trans. Robot. 2022, 38, 1380–1394. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Xu, D.; Xue, A. Surface Electromyography Based Estimation of Knee Joint Angle by Using Correlation Dimension of Wavelet Coefficient. IEEE Access 2019, 7, 60522–60531. [Google Scholar] [CrossRef]
- Shi, X.; Qin, P.; Zhu, J.; Xu, S.; Shi, W. Lower Limb Motion Recognition Method Based on Improved Wavelet Packet Transform and Unscented Kalman Neural Network. Math. Probl. Eng. 2020, 2020, 5684812. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, R.; Chen, W.; Xiong, C. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals. Front. Neurosci. 2017, 11, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, K.; Liu, H.; Zhang, D. A Practical and Adaptive Method to Achieve EMG-Based Torque Estimation for a Robotic Exoskeleton. IEEE/ASME Trans. Mechatron. 2019, 24, 483–494. [Google Scholar] [CrossRef]
- Rabiner, L. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, C.; Yang, K. A Novel Surface Electromyographic Signal-Based Hand Gesture Prediction Using a Recurrent Neural Network. Sensors 2020, 20, 3994. [Google Scholar] [CrossRef]
- Springer, D.; Tarassenko, L.; Clifford, D. Logistic Regression-HSMM-Based Heart Sound Segmentation. IEEE Trans. Biomed. Eng. 2016, 63, 822–832. [Google Scholar] [CrossRef]
- Korkmazskiy, F.; Juang, B.; Soong, F. Generalized mixture of HMMs for continuous speech recognition. In Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, 21–24 April 1997. [Google Scholar]
- Kaczmarek, P.; Mańkowski, T.; Tomczyński, J. putEMG-A Surface Electromyography Hand Gesture Recognition Dataset. Sensors 2019, 19, 3548. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Li, Y.; Lin, S. Design of a Novel Non-Invasive Wearable Device for Array Surface Electromyogram. Int. J. Inf. Electron. Eng. 2016, 6, 139–142. [Google Scholar] [CrossRef]
Acquisition Device | GForcePro+ | Sampling Frequency | 1000 Hz |
---|---|---|---|
Number of channels | 8 | Number of subjects | 8 |
Age range of subjects | 24–30 | Health state | Intact subjects |
Type | Continuous 2 | Continuous 4 | |
hand actions | hand actions | ||
Hand actions | 12 | 4 | |
Repetition times | 20 | 10 | |
Sampling time of a repetition | 5 s | 10 s | |
Repetition interval | 5 s | 10 s | |
Number of repetitions | 5 | 3 | |
Action interval | 5 min | 5 min |
Metric | Subjects | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
---|---|---|---|---|---|---|---|---|---|---|
Method | ||||||||||
Prediction accuracy (%) | LSTM | 97.9 | 95.8 | 94 | 91.6 | 95.0 | 93.1 | 93.9 | 91.9 | |
GRU | 97.3 | 97.8 | 94.3 | 92.1 | 94.9 | 90.7 | 93.9 | 89.6 | ||
OURS | 99.7 | 98.6 | 98.9 | 96.4 | 99.3 | 95.4 | 99.5 | 96.6 | ||
Processing time (ms) | LSTM | 303 | 300 | 300 | 323 | 310 | 307 | 315 | 313 | |
GRU | 293 | 290 | 297 | 320 | 301 | 295 | 305 | 297 | ||
OURS | 71 | 69 | 68 | 72 | 69 | 73 | 71 | 72 |
Metric | Hand Actions | (1) | (2) | (3) | (4) | |
---|---|---|---|---|---|---|
Method | ||||||
Prediction accuracy (%) | Model pruning | 95.8 | 92.9 | 94.6 | 95 | |
No model pruning | 31.7 | 22.5 | 20 | 21.3 | ||
Processing time (ms) | Model pruning | 96 | 95 | 97 | 94 | |
No model pruning | 272 | 281 | 269 | 277 |
Metric | Subjects | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
---|---|---|---|---|---|---|---|---|---|---|
Hand Actions | ||||||||||
Prediction accuracy (%) | (1) | 96.7 | 96.7 | 96.7 | 83.3 | 96.7 | 100 | 100 | 96.7 | |
(2) | 100 | 96.7 | 93.3 | 86.7 | 100 | 90 | 86.7 | 90 | ||
(3) | 100 | 86.7 | 96.7 | 90 | 100 | 96.7 | 93.3 | 93.3 | ||
(4) | 100 | 96.7 | 90 | 80 | 100 | 100 | 100 | 93.3 | ||
Processing time (ms) | (1) | 94 | 89 | 93 | 92 | 91 | 95 | 93 | 95 | |
(2) | 94 | 92 | 94 | 92 | 90 | 94 | 93 | 94 | ||
(3) | 96 | 94 | 94 | 95 | 93 | 94 | 92 | 95 | ||
(4) | 93 | 91 | 97 | 94 | 92 | 97 | 94 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Liu, S.; Yang, J.; Al-Selwi, M.; Li, J. sEMG-Based Continuous Hand Action Prediction by Using Key State Transition and Model Pruning. Sensors 2022, 22, 9949. https://doi.org/10.3390/s22249949
Zheng K, Liu S, Yang J, Al-Selwi M, Li J. sEMG-Based Continuous Hand Action Prediction by Using Key State Transition and Model Pruning. Sensors. 2022; 22(24):9949. https://doi.org/10.3390/s22249949
Chicago/Turabian StyleZheng, Kaikui, Shuai Liu, Jinxing Yang, Metwalli Al-Selwi, and Jun Li. 2022. "sEMG-Based Continuous Hand Action Prediction by Using Key State Transition and Model Pruning" Sensors 22, no. 24: 9949. https://doi.org/10.3390/s22249949
APA StyleZheng, K., Liu, S., Yang, J., Al-Selwi, M., & Li, J. (2022). sEMG-Based Continuous Hand Action Prediction by Using Key State Transition and Model Pruning. Sensors, 22(24), 9949. https://doi.org/10.3390/s22249949