Machine Learning-Assisted Synchronous Fluorescence Sensing Approach for Rapid and Simultaneous Quantification of Thiabendazole and Fuberidazole in Red Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Materials
2.2. Instruments
2.3. Methods
2.3.1. Pre-Treatment Method of Wine Samples
2.3.2. Calibration Set and Test Set
2.3.3. Detection Method
3. Result and Discussion
3.1. Fluorescence Spectral Analysis and Solvent Selection
3.2. Extraction Method
3.2.1. Selection of Constant-Energy Difference
3.2.2. Calibration Set
3.2.3. Machine Learning
3.2.4. Predicted Results for Actual Samples
3.3. Dilution Method
3.3.1. Fluorescence Spectra of Diluted Wine Samples Spiked with TBZ and FBZ
3.3.2. Selection of Constant-Energy Difference
3.3.3. Correction Set
3.3.4. Machine Learning
4. Conclusions
- The application of a derivative constant-energy synchronous fluorescence sensor preliminarily separates the spectra of the mixture, which facilitates the application of machine learning;
- Machine learning can further assist the fluorescence sensor to analyze and realize rapid detection of mixtures in a complex matrix;
- The method proposed in this study is simple and quick, which overcomes the disadvantages of traditional detection methods in terms of being time consuming and having high cost.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fallatah, A.; Kuperus, N.; Almomtan, M.; Padalkar, S. Sensitive Biosensor Based on Shape-Controlled ZnO Nanostructures Grown on Flexible Porous Substrate for Pesticide Detection. Sensors 2022, 22, 3522. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.H.; Li, Y.P.; Wang, C.; Liu, Z.M.; Zang, X.H.; Zhou, X.; Wang, Z. Dispersive liquid-liquid microextraction combined with high performance liquid chromatography-fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Anal. Chim. Acta 2009, 638, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Mirres, A.C.d.M.; da Silva, B.E.P.d.M.; Tessaro, L.; Galvan, D.; de Andrade, J.C.; Aquino, A.; Joshi, N.; Conte-Junior, C.A. Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. Biosensors 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as a biological fluid: History, production, and role in disease prevention. J. Clin. Lab. Anal. 1997, 11, 287–313. [Google Scholar] [CrossRef]
- Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr. 2001, 131, 1844–1849. [Google Scholar] [CrossRef] [Green Version]
- Cabras, P.; Angioni, A.; Garau, V.L.; Melis, M.; Pirisi, F.M.; Minelli, E.V.; Cabitza, F.; Cubeddu, M. Fate of some new fungicides (cyprodinil, fludioxonil, pyrimethanil, and tebuconazole) from vine to wine. J. Agric. Food Chem. 1997, 45, 2708–2710. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; Fernandez-Cruz, T.; Sieiro-Sampedro, T.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Cilla-Garcia, D.A.; Garcia-Pastor, M.; Martinez-Soria, M.T.; Sanz-Asensio, J.; Simal-Gandara, J. Dissipation of Fungicide Residues during Winemaking and Their Effects on Fermentation and the Volatile Composition of Wines. J. Agric. Food Chem. 2016, 64, 1344–1354. [Google Scholar] [CrossRef]
- Guo, B.; Huang, Z.Q.; Wang, M.L.; Wang, X.Y.; Zhang, Y.; Chen, B.; Li, Y.J.; Yan, H.F.; Yao, S.Z. Simultaneous direct analysis of benzimidazole fungicides and relevant metabolites in agricultural products based on multifunction dispersive solid-phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 4796–4807. [Google Scholar] [CrossRef]
- Dandic, A.; Novak, I.; Jozanovic, M.; Pukles, I.; Szechenyi, A.; Budetic, M.; Samardzic, M. A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. Sensors 2022, 22, 3785. [Google Scholar] [CrossRef]
- Wen, Y.; Li, J.; Yang, F.; Zhang, W.; Li, W.; Liao, C.; Chen, L. Salting-out assisted liquid-liquid extraction with the aid of experimental design for determination of benzimidazole fungicides in high salinity samples by high-performance liquid chromatography. Talanta 2013, 106, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.W.; Liu, S.J.; Zheng, F.; Xiao, H.M.; Guan, H.Y.; Feng, Y.Q. Identification and quantification of benzimidazole metabolites of thiophonate-methyl sprayed on celery cabbage using SiO2@NiO solid-phase extraction in combination with HPLC-MS/MS. Chin. Chem. Lett. 2020, 31, 482–486. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, H.; Ning, Q.; Zhang, J.; Shen, W.; Chen, H.; Shen, C.; Xie, W. Determination of nine pesticide residues in honey using high performance liquid chromatography-tandem mass spectrometry. Se Pu Chin. J. Chromatogr. 2019, 37, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.Y.; Diao, Z.X.; Guo, Y.W.; Xie, K.Z.; Chen, L.; Xue, C.; Lu, Y.; Chen, J.Y.; Zhang, T. Simultaneous Determination of Albendazole and Its Three Metabolites in Pig and Poultry Muscle by Ultrahigh-Performance Liquid Chromatography-Fluorescence Detection. Foods 2021, 10, 2350. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.D.; Liu, Y.H.; Li, Y.; Wu, P.P.; Wu, H.L.; Li, Y.Q. Three-Dimensional Fluorescence Technique Coupled with Chemometric Second-Order Calibration Method for Simultaneous Detection of Thiabendazole and Fuberidazole in Red Wine. Life Sci. Instrum. 2015, 13, 4. [Google Scholar]
- Lloyd, J. Synchronized excitation of fluorescence emission spectra. Nature 1971, 231, 2. [Google Scholar] [CrossRef]
- Omar, M.A.; Hamid, M.A.A.; Batakoushy, H.A.; Ahmed, H.M. Second-derivative synchronous spectrofluorimetric assay of dapagliflozin: Application to stability study and pharmaceutical preparation. Lumin. J. Biol. Chem. Lumin. 2020, 35, 260–265. [Google Scholar] [CrossRef]
- Murillo Pulgarin, J.A.; Garcia Bermejo, L.F.; Becedas Rodriguez, S. Simultaneous Determination of 1-Naphthylacetic Acid and Thiabendazole in Strawberry Tree Berries and Citrus Fruits by Fluorescence Spectrometry. Food Anal. Methods 2018, 11, 394–402. [Google Scholar] [CrossRef]
- Naraparaju, S.; Anumolu, P.K.D.; Gurrala, S.; Galennagari, R. Quantification of Tamsulosin Hydrochloride and Solifenacin Succinate by Discriminative Derivative Synchronous Emission Spectroscopy. Turk. J. Pharm. Sci. 2018, 15, 149–155. [Google Scholar] [CrossRef]
- El Sharkasy, M.E.; Walash, M.; Belal, F.; Salim, M.M. First derivative synchronous spectrofluorimetric method for the simultaneous determination of propofol and cisatracurium besylate in biological fluids. Lumin. J. Biol. Chem. Lumin. 2020, 35, 312–320. [Google Scholar] [CrossRef]
- Attaa Bakr, N.; Saad, S.; Elshabrawy, Y.; Eid, M. First-derivative synchronous spectrofluorimetric method for estimation of losartan potassium and atorvastatin in their pure forms and in tablets. Lumin. J. Biol. Chem. Lumin. 2020, 35, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Yosrey, E.; Elmansi, H.; Sheribah, Z.A.; Metwally, M.E.-S. Micellar-emphasized simultaneous determination of ivabradine hydrochloride and felodipine using synchronous spectrofluorimetry. Lumin. J. Biol. Chem. Lumin. 2022, 37, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, Z.; Tian, R.; Niu, Y.; Gao, S.; Liu, H. Total synchronous fluorescence spectroscopy coupled with deep learning to rapidly identify the authenticity of sesame oil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 244, 118841. [Google Scholar] [CrossRef] [PubMed]
- Venturini, F.; Sperti, M.; Michelucci, U.; Herzig, I.; Baumgartner, M.; Caballero, J.P.; Jimenez, A.; Deriu, M.A. Exploration of Spanish Olive Oil Quality with a Miniaturized Low-Cost Fluorescence Sensor and Machine Learning Techniques. Foods 2021, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.; Gebert, F.; Walter, A.; Pargmann, C.; Duschek, F. Online discrimination of chemical substances using standoff laser-induced fluorescence signals. J. Chemom. 2020, 34, e3121. [Google Scholar] [CrossRef] [Green Version]
- Kleynhans, T.; Patterson, C.M.S.; Dooley, K.A.; Messinger, D.W.; Delaney, J.K. An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence. Herit. Sci. 2020, 8, 84. [Google Scholar] [CrossRef]
- Rios-Reina, R.; Elcoroaristizabal, S.; Ocana-Gonzalez, J.A.; Garcia-Gonzalez, D.L.; Amigo, J.M.; Callejon, R.M. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Food Chem. 2017, 230, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Z.; Peleato, N.M.; Legge, R.L.; Andrews, R.C. Fluorescence excitation emission matrices for rapid detection of polycyclic aromatic hydrocarbons and pesticides in surface waters. Environ. Sci. Water Res. Technol. 2019, 5, 315–324. [Google Scholar] [CrossRef]
- Ju, L.; Lyu, A.; Hao, H.X.; Shen, W.; Cui, H. Deep Learning-Assisted Three-Dimensional Fluorescence Difference Spectroscopy for Identification and Semiquantification of Illicit Drugs in Biofluids. Anal. Chem. 2019, 91, 9343–9347. [Google Scholar] [CrossRef] [Green Version]
- Longchamps, L.; Mandal, D.; Khosla, R. Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning. Sensors 2022, 22, 4644. [Google Scholar] [CrossRef]
- Germoush, M.O.; Alsohaimi, I.H.; Alqadami, A.A.; Alothman, Z.A.; Ali, H.M.; Algamdi, M.S.; Aldawsari, A.M. Oral administration of a potassium bromate dosage: Determination and evaluation of accumulated bromate on the liver of male mice. Drug Chem. Toxicol. 2022, 45, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Mani-Varnosfaderani, A.; Masroor, M.J.; Yamini, Y. Designating the geographical origin of Iranian almond and red jujube oils using fluorescence spectroscopy and l(1)-penalized chemometric methods. Microchem. J. 2020, 157, 104984. [Google Scholar] [CrossRef]
- Hossain, S.; Chow, C.W.K.; Hewa, G.A.; Cook, D.; Harris, M. Spectrophotometric Online Detection of Drinking Water Disinfectant: A Machine Learning Approach. Sensors 2020, 20, 6671. [Google Scholar] [CrossRef] [PubMed]
- Faassen, S.M.; Hitzmann, B. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring. Sensors 2015, 15, 10271–10291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Huang, W.; Shindi, A.A.F.; Li, Y.-Q. A novel rapid method for simultaneous determination of three diagnostically important porphyrins in erythrocytes using hyphenated synchronous fluorescence techniques. Talanta 2012, 88, 663–668. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Wu, P.-P.; Liu, Q.; Luo, H.-D.; Cao, S.-H.; Lin, G.-C.; Fu, D.-S.; Zhong, X.-D.; Li, Y.-Q. A Simple Fluorescence Spectroscopic Approach for Simultaneous and Rapid Detection of Four Polycyclic Aromatic Hydrocarbons (PAH4) in Vegetable Oils. Food Anal. Methods 2016, 9, 3209–3217. [Google Scholar] [CrossRef]
No. | TBZ (ng/mL) | FBZ (ng/mL) | No. | TBZ (ng/mL) | FBZ (ng/mL) |
---|---|---|---|---|---|
1 | 300 | 40 | 13 | 100 | 20 |
2 | 300 | 50 | 14 | 300 | 30 |
3 | 100 | 50 | 15 | 100 | 40 |
4 | 200 | 30 | 16 | 300 | 10 |
5 | 100 | 10 | 17 | 400 | 50 |
6 | 500 | 20 | 18 | 300 | 20 |
7 | 200 | 10 | 19 | 400 | 30 |
8 | 500 | 10 | 20 | 200 | 20 |
9 | 400 | 40 | 21 | 200 | 50 |
10 | 100 | 30 | 22 | 500 | 30 |
11 | 200 | 40 | 23 | 300 | 0 |
12 | 400 | 10 | 24 | 0 | 30 |
Regression Methods | RMSE for TBZ | RMSE for FBZ |
---|---|---|
linear regression | 57.29 | 8.41 |
Gaussian regression | 57.56 | 7.02 |
support vector regression | 45.19 | 4.86 |
decision tree | 76.84 | 9.25 |
neural network | 67.13 | 11.03 |
Actual | Predict | Recovery | |||
---|---|---|---|---|---|
TBZ (ng/mL) | FBZ (ng/mL) | TBZ (ng/mL) | FBZ (ng/mL) | TBZ (%) | FBZ (%) |
250 | 15 | 264 | 16.5 | 105.8 | 109.9 |
800 | 20 | 705 | 18.5 | 88.2 | 92.6 |
150 | 10 | 159 | 8.5 | 105.8 | 85.2 |
250 | 20 | 256 | 18.9 | 102.3 | 94.2 |
300 | 0 | 295 | 0 | 98.3 | / |
200 | 50 | 190 | 51.5 | 95.2 | 103.0 |
500 | 10 | 484 | 10.4 | 96.7 | 104.3 |
600 | 20 | 642 | 21.5 | 107.0 | 107.4 |
300 | 30 | 283 | 31.5 | 94.3 | 104.9 |
500 | 0 | 490 | 0 | 98.1 | / |
500 | 25 | 511 | 26 | 102.1 | 104.1 |
0 | 25 | 0 | 23.5 | / | 94.1 |
Average recovery | 99 ± 10 | 100 ± 15 |
Actual | Predict | Recovery | |||
---|---|---|---|---|---|
TBZ (ng/mL) | FBZ (ng/mL) | TBZ (ng/mL) | FBZ (ng/mL) | TBZ (%) | FBZ (%) |
200 | 70 | 230.2 | 72.2 | 115.1 | 103.1 |
150 | 60 | 158.9 | 56 | 105.9 | 93.4 |
100 | 50 | 91.5 | 49.3 | 91.5 | 98.7 |
Average recovery | 104 ± 10 | 98 ± 5 |
No. | TBZ (ng/mL) | FBZ (ng/mL) | No. | TBZ (ng/mL) | FBZ (ng/mL) |
---|---|---|---|---|---|
1 | 100 | 50 | 15 | 400 | 50 |
2 | 100 | 40 | 16 | 400 | 40 |
3 | 100 | 10 | 17 | 400 | 10 |
4 | 100 | 20 | 18 | 400 | 30 |
5 | 100 | 30 | 19 | 500 | 30 |
6 | 200 | 30 | 20 | 500 | 20 |
7 | 200 | 10 | 21 | 500 | 50 |
8 | 200 | 40 | 22 | 500 | 10 |
9 | 200 | 50 | 23 | 500 | 40 |
10 | 300 | 50 | 24 | 0 | 10 |
11 | 300 | 40 | 25 | 0 | 50 |
12 | 300 | 30 | 26 | 100 | 0 |
13 | 300 | 10 | 27 | 500 | 0 |
14 | 300 | 20 |
Regression Methods | RMSE for TBZ | RMSE for FBZ |
---|---|---|
linear regression | 71.07 | 7.39 |
Gaussian regression | 43.15 | 3.78 |
support vector regression | 31.07 | 2.77 |
decision tree | 75.52 | 8.35 |
neural network | 108.38 | 9.20 |
Wine Brands | Actual | Predict | Recovery | |||
---|---|---|---|---|---|---|
TBZ (ng/mL) | FBZ (ng/mL) | TBZ (ng/mL) | FBZ (ng/mL) | TBZ (%) | FBZ (%) | |
1 | 200 | 0 | 212 | 0 | 106.2 | / |
0 | 30 | 0 | 27 | / | 92.6 | |
200 | 20 | 187 | 21 | 93.8 | 107.3 | |
400 | 20 | 384 | 21 | 96.0 | 105.2 | |
150 | 10 | 137 | 8 | 91.8 | 85.7 | |
250 | 50 | 231 | 52 | 92.6 | 104.5 | |
300 | 0 | 318 | 0 | 106.2 | / | |
400 | 35 | 418 | 37 | 104.6 | 106.4 | |
500 | 15 | 481 | 12 | 96.3 | 85.2 | |
500 | 25 | 495 | 22 | 99.0 | 91.1 | |
2 | 400 | 0 | 418 | 0 | 104.6 | / |
0 | 40 | 0 | 42 | / | 105.6 | |
200 | 20 | 217 | 21 | 108.7 | 108.2 | |
150 | 20 | 168 | 19 | 112.3 | 98.6 | |
250 | 10 | 268 | 12 | 107.4 | 122.2 | |
3 | 400 | 20 | 401 | 18 | 100.4 | 93.8 |
250 | 0 | 231 | 0 | 92.6 | / | |
500 | 20 | 518 | 22 | 103.7 | 111.1 | |
Average recovery | 101 ± 5 | 101 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-R.; Wei, J.-W.; Chen, S.-Y.; Li, N.; Zhong, X.-D.; Li, Y.-Q. Machine Learning-Assisted Synchronous Fluorescence Sensing Approach for Rapid and Simultaneous Quantification of Thiabendazole and Fuberidazole in Red Wine. Sensors 2022, 22, 9979. https://doi.org/10.3390/s22249979
He J-R, Wei J-W, Chen S-Y, Li N, Zhong X-D, Li Y-Q. Machine Learning-Assisted Synchronous Fluorescence Sensing Approach for Rapid and Simultaneous Quantification of Thiabendazole and Fuberidazole in Red Wine. Sensors. 2022; 22(24):9979. https://doi.org/10.3390/s22249979
Chicago/Turabian StyleHe, Jia-Rong, Jia-Wen Wei, Shi-Yi Chen, Na Li, Xiu-Di Zhong, and Yao-Qun Li. 2022. "Machine Learning-Assisted Synchronous Fluorescence Sensing Approach for Rapid and Simultaneous Quantification of Thiabendazole and Fuberidazole in Red Wine" Sensors 22, no. 24: 9979. https://doi.org/10.3390/s22249979
APA StyleHe, J. -R., Wei, J. -W., Chen, S. -Y., Li, N., Zhong, X. -D., & Li, Y. -Q. (2022). Machine Learning-Assisted Synchronous Fluorescence Sensing Approach for Rapid and Simultaneous Quantification of Thiabendazole and Fuberidazole in Red Wine. Sensors, 22(24), 9979. https://doi.org/10.3390/s22249979