Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses
Abstract
:1. Introduction
2. System Introduction
2.1. System Modules and Parts
2.2. Control of Gas Environment
- The mixing chamber is evacuated before the gas mixture is prepared. At this stage, the test chamber is filled with synthetic air, which is prepared from 99.99% N2 and 99.99% O2. For the test, the system records the baseline of the sensor.
- Different gas components are injected sequentially into the mixing chamber. For this example, the desired preparation is a hydrogen–air mixture. To produce this gas mixture, high-purity hydrogen, nitrogen, and oxygen are introduced into the gas mixing chamber sequentially. Oxygen must be added last to minimize the risk of explosion. When the partial pressure of hydrogen reaches the setpoint, the pipeline is evacuated, and then the next gas (N2) is fed into the chamber. The partial pressure of each gas is monitored by two absolute-pressure sensors and is controlled by a combination of an MFC, needle valve, and EM valve. The concentration of each gas is then determined by its partial pressure. For example, if the partial pressures of hydrogen, nitrogen, and oxygen are 1 kPa, 78.21 kPa, and 20.79 kPa, respectively, then the hydrogen concentration is 1%. During the gas-mixing process, the sample is still soaked in synthetic air.
- The air in the test chamber is evacuated. This stage of the process requires approximately 3 s.
- The valve between the mixing chamber and test chamber is opened. When the two chambers are connected, the gas expands freely from the mixing chamber to the test chamber. The pressures of both chambers stabilize in ~1 s. Because the volumes of the mixing chamber and the test chamber are 4256 cm3 and 958 cm3, respectively, the total pressure of the mixing chamber is adjusted to 1.225 bar during the mixing process. When the evacuated test chamber is connected to the mixing chamber, the pressure of the two combined chambers reaches exactly 1 bar.
- The test chamber is evacuated. When the sample signal stabilizes in hydrogen, the test chamber is evacuated again, in preparation for synthetic air.
- Synthetic air is injected into the test chamber. The test chamber is directly filled with synthetic air at a pressure of 1 bar for rapid gas exchange. Thereafter, the gas mixing chamber is evacuated again for the next cycle of gas preparation.
2.3. Control of Gaseous Interferent
3. Optical Signal Measurement
3.1. Optical Test Unit
3.2. Calibration of Optical Components
3.3. Study on Light-Intensity Test Units
3.3.1. Thermopile Sensor and Power Meter
3.3.2. Photodiode and DAQ Card
3.3.3. Photodiode and Lock-in Amplifier
3.3.4. Summary of Findings on Light-Intensity Units
4. Capability for Simultaneous Measurement of Electrical and Optical Signals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.Q.; Yao, F.L.; Xu, P.C.; Li, M.; Yu, H.T.; Li, X.X. Quantitative Structure-Activity Relationship of Nanowire Adsorption to SO2 Revealed by in Situ TEM Technique. Nano Lett. 2021, 21, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Huynh, T.-P.; Haick, H. Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers Via Skin and Breath: Toward Disease Prevention via Wearable Devices. Nano Lett. 2016, 16, 4194–4202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pan, J.; Zhang, Z.; Wu, H.; Yao, N.; Cai, D.; Xu, Y.; Zhang, J.; Sun, G.; Wang, L.; et al. Ultrasensitive Skin-Like Wearable Optical Sensors Based on Glass Micro/Nanofibers. Opto-Electron. Adv. 2020, 3, 190046. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwoka, M.; Szuber, J. Studies of NO2 Gas-Sensing Characteristics of a Novel Room-Temperature Surface-Photovoltage Gas Sensor Device. Sensors 2020, 20, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Shao, H.; Wang, L.; Jin, H.; Xia, D.; Deng, S.; Wang, Y.; Chen, Y.; Hua, C.; Liu, L.; et al. From a Relatively Hydrophobic and Triethylamine (TEA) Adsorption-Selective Core-Shell Heterostructure to a Humidity-Resistant and TEA Highly Selective Sensing Prototype: An Alternative Approach to Improve the Sensing Characteristics of Tea Sensors. ACS Sens. 2020, 5, 571–579. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Xu, P.; Yu, H.; Xu, T.; Zhang, S.; Li, X. Revealing Humidity-Enhanced NH3 Sensing Effect by Using Resonant Microcantilever. Sens. Actuators B-Chem. 2018, 257, 488–495. [Google Scholar] [CrossRef]
- Benrekia, F.; Attari, M.; Bouhedda, M. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA). Sensors 2013, 13, 2967–2985. [Google Scholar] [CrossRef]
- Yang, I.-H.; Jin, J.-H.; Min, N.K. A Micromachined Metal Oxide Composite Dual Gas Sensor System for Principal Component Analysis-Based Multi-Monitoring of Noxious Gas Mixtures. Micromachines 2020, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N., Jr.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef]
- Liu, X.; Ma, T.; Pinna, N.; Zhang, J. Two-Dimensional Nanostructured Materials for Gas Sensing. Adv. Funct. Mater. 2017, 27, 1702168. [Google Scholar] [CrossRef]
- Rossignol, J.; Harrabi, A.; Stuerga, D.; Pribetich, P.; Bailly, G.; Leblois, T. Critical Influence of Dielectric Sensitive Material and Manufactured Process in Microwave Gas-Sensing: Application of Ammonia Detection with an Interdigital Sensor. ACS Omega 2020, 5, 11507–11514. [Google Scholar] [CrossRef] [PubMed]
- Helwig, A.; Hackner, A.; Mueller, G.; Zappa, D.; Sberveglieri, G. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems. Sensors 2018, 18, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvinen, T.; Lorite, G.S.; Rautio, A.-R.; Juhasz, K.L.; Kukovecz, A.; Konya, Z.; Kordas, K.; Toth, G. Portable Cyber-Physical System for Indoor and Outdoor Gas Sensing. Sens. Actuators B-Chem. 2017, 252, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Yoon, N.R.; Kang, B.H.; Lee, S.W.; Gopalan, S.A.; Jeong, H.M.; Lee, S.H.; Kwon, D.H.; Kang, S.W. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds. Sensors 2014, 14, 11659–11671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jatana, G.; Geckler, S.; Koeberlein, D.; Partridge, W. Design and Development of a Probe-Based Multiplexed Multi-Species Absorption Spectroscopy Sensor for Characterizing Transient Gas-Parameter Distributions in the Intake Systems of IC Engines. Sens. Actuators B-Chem. 2017, 240, 1197–1204. [Google Scholar] [CrossRef] [Green Version]
- Jochum, T.; Rahal, L.; Suckert, R.J.; Popp, J.; Frosch, T. All-in-One: A Versatile Gas Sensor Based on Fiber Enhanced Raman Spectroscopy for Monitoring Postharvest Fruit Conservation and Ripening. Analyst 2016, 141, 2023–2029. [Google Scholar] [CrossRef] [Green Version]
- Tittl, A.; Mai, P.; Taubert, R.; Dregely, D.; Liu, N.; Giessen, H. Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing. Nano Lett. 2011, 11, 4366–4369. [Google Scholar] [CrossRef]
- Pannek, C.; Vetter, T.; Oppmann, M.; Weber, C.; Eberhardt, A.; Dold, M.; Bauersfeld, M.L.; Henfling, M.; Trupp, S.; Schug, B.; et al. Highly Sensitive Reflection Based Colorimetric Gas Sensor to Detect CO in Realistic Fire Scenarios. Sens. Actuators B-Chem. 2020, 306, 127572. [Google Scholar] [CrossRef]
- Rastrello, F.; Placidi, P.; Scorzoni, A. A System for the Dynamic Control and Thermal Characterization of Ultra Low Power Gas Sensors. IEEE Trans. Instrum. Meas. 2011, 60, 1876–1883. [Google Scholar] [CrossRef]
- Nieuwenhuizen, M.S.; Harteveld, J.L.N. An Automated Saw Gas Sensor Testing System. Sens. Actuators A-Phys. 1994, 44, 219–229. [Google Scholar] [CrossRef]
- Bonilla-Manrique, O.E.; Posada-Roman, J.E.; Garcia-Souto, J.A.; Ruiz-Llata, M. Sub-ppm-Level Ammonia Detection Using Photoacoustic Spectroscopy with an Optical Microphone Based on a Phase Interferometer. Sensors 2019, 19, 2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarfraz, J.; Rosqvist, E.; Ihalainen, P.; Peltonen, J. Electro-Optical Gas Sensor Consisting of Nanostructured Paper Coating and an Ultrathin Sensing Element. Chemosensors 2019, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Beni, T.; Yamasaku, N.; Kurotsu, T.; To, N.; Okazaki, S.; Arakawa, T.; Balcytics, A.; Seniutinas, G.; Juodkazis, S.; Nishijima, Y. Metamaterial for Hydrogen Sensing. ACS Sens. 2019, 4, 2389–2394. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.-H.; Kim, H.W.; Kim, S.S. Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview. Appl. Sci. 2019, 9, 1775. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Huang, J.; Ong, C.W. Feasibility of H2 Sensors Composed of Tungsten Oxide Nanocluster Films. Int. J. Hydrog. Energ. 2013, 38, 15559–15566. [Google Scholar] [CrossRef]
- Alrammouz, R.; Lazerges, M.; Pironon, J.; Bin Taher, I.; Randi, A.; Halfaya, Y.; Gautier, S. V2O5 Gas Sensors: A Review. Sens. Actuators A-Phys. 2021, 332, 113179. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Hu, J.; Cai, P.; Lv, Y. A Cataluminescence Gas Sensor Based on Nanosized V2O5 for Tert-Butyl Mercaptan. Talanta 2010, 82, 733–738. [Google Scholar] [CrossRef]
- Rizzo, G.; Arena, A.; Bonavita, A.; Donato, N.; Neri, G.; Saitta, G. Gasochromic Response of Nanocrystalline Vanadium Pentoxide Films Deposited from Ethanol Dispersions. Thin Solid Films 2010, 518, 7124–7127. [Google Scholar] [CrossRef]
- Ho, Y.K.; Chang, C.C.; Wei, D.H.; Dong, C.L.; Chen, C.L.; Chen, J.L.; Jang, W.L.; Hsu, C.C.; Chan, T.S.; Kumar, K.; et al. Characterization of Gasochromic Vanadium Oxides Films by X-Ray Absorption Spectroscopy. Thin Solid Films 2013, 544, 461–465. [Google Scholar] [CrossRef]
- Hu, C.-W.; Yamada, Y.; Yoshimura, K. Fabrication of Nickel Oxyhydroxide/Palladium (NiOOH/Pd) Thin Films for Gasochromic Application. J. Mater. Chem. C 2016, 4, 5390–5397. [Google Scholar] [CrossRef]
- Yaacob, M.H.; Campbell, J.L.; Wisitsoraat, A.; Wlodarski, W. Gasochromic Response of Pd/NiO Nanostructured Film Towards Hydrogen. Sens. Lett. 2011, 9, 898–901. [Google Scholar] [CrossRef]
- Du, Y.; Xue, Q.; Zhang, Z.; Xia, F.; Li, J.; Han, Z. Hydrogen Gas Sensing Properties of Pd/A-C:Pd/SiO2/Si Structure at Room Temperature. Sens. Actuators B-Chem. 2013, 186, 796–801. [Google Scholar] [CrossRef]
- Hu, Y.; Lei, J.; Wang, Z.; Yang, S.; Luo, X.; Zhang, G.; Chen, W.; Gu, H. Rapid Response Hydrogen Sensor Based on Nanoporous Pd Thin Films. Int. J. Hydrog. Energ. 2016, 41, 10986–10990. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.N.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Guo, F.Q.; Chen, D.; Zhang, R.; Zheng, Y.D. Hydrogen Gas Sensor Based on SnO2 Nanospheres Modified with Sb2O3 Prepared by One-Step Solvothermal Route. Sens. Actuators B-Chem. 2021, 331, 129441. [Google Scholar] [CrossRef]
- Chen, M.; Zou, L.; Zhang, Z.; Shen, J.; Li, D.; Zong, Q.; Gao, G.; Wu, G.; Shen, J.; Zhang, Z. Tandem Gasochromic-Pd-WO3/Graphene/Si Device for Room-Temperature High-Performance Optoelectronic Hydrogen Sensors. Carbon 2018, 130, 281–287. [Google Scholar] [CrossRef]
- Chan, C.-C.; Hsu, W.-C.; Chang, C.-C.; Hsu, C.-S. Hydrogen Incorporation in Gasochromic Coloration of Sol-Gel WO3 Thin Films. Sens. Actuators B-Chem. 2011, 157, 504–509. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Yoo, I.-H.; Lee, Y.-A.; Seo, H. Green Deposition of Pd Nanoparticles on WO3 for Optical, Electronic and Gasochromic Hydrogen Sensing Applications. Sens. Actuators B-Chem. 2015, 221, 411–417. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, J.X.; Wong, M.H.; Tang, Y.M.; Ong, C.W. Versatile Computer-Controlled System for Characterization of Gas Sensing Materials. Rev. Sci. Instrum. 2011, 82, 105001. [Google Scholar] [CrossRef] [Green Version]
- Annanouch, F.E.; Haddi, Z.; Ling, M.; Di Maggio, F.; Vallejos, S.; Vilic, T.; Zhu, Y.; Shujah, T.; Umek, P.; Bittencourt, C.; et al. Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen. Acs. Appl. Mater. Inter. 2016, 8, 10413–10421. [Google Scholar] [CrossRef]
- Nugroho, F.A.A.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L.J.; Fanta, A.B.d.S.; Kadkhodazadeh, S.; Wagner, J.B.; Antosiewicz, T.J.; et al. Metal-Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Hydrogen Detection. Nat. Mater. 2019, 18, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Volume 13, pp. 671–682. [Google Scholar]
- Zhao, M.; Huang, J.; Ong, C.W. Preparation and Structure Dependence of H2 Sensing Properties of Palladium-Coated Tungsten Oxide Films. Sens. Actuators B-Chem. 2013, 177, 1062–1070. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, J.X.; Ong, C.W. Diffusion-Controlled H2 Sensors Composed of Pd-Coated Highly Porous WO3 Nanocluster Films. Sens. Actuators B-Chem. 2014, 191, 711–718. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhao, M.; Wang, C.; Wang, J.; Ye, J.-M.; Wei, Y.-C.; Li, Z.-Y.; Zhao, R.; Liu, G.-Z.; Geng, Y.-H.; et al. Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses. Sensors 2022, 22, 1014. https://doi.org/10.3390/s22031014
Wei J, Zhao M, Wang C, Wang J, Ye J-M, Wei Y-C, Li Z-Y, Zhao R, Liu G-Z, Geng Y-H, et al. Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses. Sensors. 2022; 22(3):1014. https://doi.org/10.3390/s22031014
Chicago/Turabian StyleWei, Jie, Meng Zhao, Cong Wang, Jun Wang, Jian-Min Ye, Yu-Chen Wei, Zhe-Yi Li, Run Zhao, Guo-Zhen Liu, Yan-Hong Geng, and et al. 2022. "Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses" Sensors 22, no. 3: 1014. https://doi.org/10.3390/s22031014
APA StyleWei, J., Zhao, M., Wang, C., Wang, J., Ye, J. -M., Wei, Y. -C., Li, Z. -Y., Zhao, R., Liu, G. -Z., Geng, Y. -H., Wang, R., Xiao, H. -D., Li, Y., Li, C. -Y., Gao, Z. -Q., & Gao, J. (2022). Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses. Sensors, 22(3), 1014. https://doi.org/10.3390/s22031014