Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations
Abstract
:1. Introduction
2. Methods and Data
2.1. Satellite-Based GNSS Observation Model
2.2. Data Sources and Solving Strategies
2.3. Quality Control for LEO Satellites’ Kinematic Orbit
- Taking the dynamic orbit as a reference, the orbital residuals are calculated by through subtracting the kinematic orbit and the dynamic orbit;
- Filtering the kinematic orbit based on the 3σ principle, supposing the data as Gross Errors and rejecting them when the orbital residual is greater than 3σ;
- Using Chebyshev polynomials to replace the gaps in the kinematic orbit data. However, we only fill the gaps for less than three consecutive vacancies for reducing the effect of unnecessary fitting errors.
3. Results and Analysis
3.1. Carrier Phase Residual Analysis
3.2. Satellite Laser Ranging Validation
- To reduce the effect of tropospheric refraction on SLR observations, the SLR observation is excluded with satellite altitude angles less than 25°;
- The data from the station Svetloe (1888 12350S002) and the station Irkutsk (1891 12313S007) are deducted to ensure the quality of the observations;
- The residuals greater than 3σ during the validation based on the 3σ principle are rejected.
3.3. Comparison with a Precise Ephemeris
- Group 1: Applying quality control for the solved kinematic orbits before comparing with reference orbits.
- Group 2: Comparing with reference orbits without applying quality control.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K. Research on the Precision Orbit Determination for LEO Based on Spaceborn GNSS Data. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Jin, S.; Park, P.-H. Strain accumulation in South Korea inferred from GPS measurements. Earth Planets Space 2006, 58, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; He, M.; Luan, W.; Jiao, J. Crustal vertical deformation of Amazon Basin derived from GPS and GRACE/GFO data over past two decades. Geod. Geodyn. 2021, 12, 441–450. [Google Scholar] [CrossRef]
- Fu, L.-L.; Smith, R. Global Ocean Circulation from Satellite Altimetry and High-Resolution Computer Simulation. Bull. Am. Meteorol. Soc. Bull. Am. Meteorol. Soc. 1996, 77, 2625–2636. [Google Scholar] [CrossRef] [Green Version]
- Kusche, J.; Schrama, E. Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Zhang, L.J.; Tapley, B.D. The understanding of length-of-day variations from satellite gravity and laser ranging measurements. Geophys. J. Int. 2011, 184, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Calabia, A.; Jin, S. Upper—Atmosphere Mass Density Variations From CASSIOPE Precise Orbits. Space Weather 2021, 19, e2020SW002645. [Google Scholar] [CrossRef]
- Jin, S.; Gao, C.; Yuan, L.; Guo, P.; Calabia, A.; Ruan, H.; Luo, P. Long-Term Variations of Plasmaspheric Total Electron Content from Topside GPS Observations on LEO Satellites. Remote Sens. 2021, 13, 545. [Google Scholar] [CrossRef]
- Dong, Z.; Jin, S. Evaluation of the Land GNSS-Reflected DDM Coherence on Soil Moisture Estimation from CYGNSS Data. Remote Sens. 2021, 13, 570. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Cai, J.; Bao, J.; Fu, Y. Extraction and analysis of saline soil deformation in the Qarhan Salt Lake region (in Qinghai, China) by the sentinel SBAS-InSAR technique. Geod. Geodyn. 2021, 1674–9847. [Google Scholar] [CrossRef]
- Švehla, D.; Rothacher, M. Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv. Geosci. 2003, 1, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Qin, X. Research on Precision Orbit Determination Theory and Method of Low Earth Orbiter Based on GPS Technique; PLA Information Engineering University: Zhengzhou, China, 2009. [Google Scholar]
- Ren, L.; Schn, S. PPP-based Swarm kinematic orbit determination. Ann. Geophys. 2018, 36, 1227–1241. [Google Scholar] [CrossRef] [Green Version]
- Tenzer, R.; Chen, W.; Jin, S. Effect of Upper Mantle Density Structure on Moho Geometry. Pure Appl. Geophys. 2015, 172, 1563–1583. [Google Scholar] [CrossRef]
- Weigelt, M.; Dam, T.v.; Jggi, A.; Prange, L.; Keller, M.; Sneeuw, N. Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. J. Geophys. Res. Solid Earth 2013, 118, 3848–3859. [Google Scholar] [CrossRef] [Green Version]
- Jäggi, A.; Dahle, C.; Arnold, D.; Bock, H.; Meyer, U.; Beutler, G.; van den Ijssel, J. Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv. Space Res. 2016, 57, 218–233. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An Optimized Short—Arc Approach: Methodology and Application to Develop Refined Time Series of Tongji—Grace2018 GRACE Monthly Solutions. J. Geophys. Res. Solid Earth 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Wan, X.; Yu, J.; Liang, L.; Ran, J.; Annan, R.F. Analysis of limitations on recovery of gravity field based on satellite gravity gradient data. Geod. Geodyn. 2021, 12, 31–42. [Google Scholar] [CrossRef]
- Zheng, Q.; Chen, S. Review on the recent developments of terrestrial water storage variations using GRACE satellite-based datum. Prog. Geophys. 2015, 30, 2603–2615. [Google Scholar]
- Montenbruck, O.; Hackel, S.; van den Ijssel, J.; Arnold, D. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut. 2018, 22, 79. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Jiao, G. Assessment of multi-frequency GNSS PPP models using GPS, Beidou, GLONASS, Galileo and QZSS. Meas. Sci. Technol. 2020, 31, 064008. [Google Scholar] [CrossRef]
- Jin, S.; Jin, R.; Kutoglu, H. Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations. J. Geod. 2017, 91, 613–626. [Google Scholar] [CrossRef]
- Okoh, D.; Onwuneme, S.; Seemala, G.; Jin, S.; Rabiu, B.; Nava, B.; Uwamahoro, J. Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements. J. Atmos. Sol. Terr. Phys. 2018, 170, 1–10. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Fan, W.; Zhou, X.; Chen, Q.; Jiang, W. Assessment of single-difference and track-to-track ambiguity resolution in LEO precise orbit determination. GPS Solut. 2021, 25, 62. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Ge, M.; Shi, C.; Du, R. Precise orbit determination of GPS and CHAMP satellites with PANDA software. J. Geod. Geodyn. 2005, 25, 5. [Google Scholar]
- Ijssel, J.; Encarnacao, J.; Doornbos, E.; Visser, P. Precise science orbits for the Swarm satellite constellation. Adv. Space Res. 2015, 56, 1042–1055. [Google Scholar] [CrossRef]
- Mao, X.; Arnold, D.; Girardin, V.; Villiger, A.; Jäggi, A. Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS Software. Adv. Space Res. 2021, 67, 788–805. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Petit, G.; Luzum, B. IERS conventions (2010). Tech. Rep. DTIC Doc. 2010, 36, 180. [Google Scholar]
- Lyard, F.; Lefèvre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Peter, H.; Beutler, G.; Hugentobler, U. Kinematic Orbit Determination for Low Earth Orbiters (LEOs). In Vistas for Geodesy in the New Millennium; Springer: Berlin/Heidelberg, Germany, 2002; Volume 125, pp. 303–308. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2 User Manual; University of Bern, Bern Open Publishing: Bern, Switzerland, 2015. [Google Scholar]
- Zhang, B.; Niu, J.; Wang, Z.; Xu, F.; Tian, K. Centimeter precise orbit determination for the Swarm satellites via undifferenced kinematic method. Acta Geod. Cartogr. Sin. 2021, 50, 10. [Google Scholar]
- Arnold, D.; Montenbruck, O.; Hackel, S.; Sośnica, K. Satellite laser ranging to low Earth orbiters: Orbit and network validation. J. Geod. 2019, 93, 2315–2334. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Zou, X.; Wu, L.; Yu, N. Evaluation of GOCE Precise Orbit using SLR. J. Geod. Geodyn. 2016, 36, 4. [Google Scholar]
- Sunik, A.; Grahsl, A.; Arnold, D.; Villiger, A.; Dach, R.; Beutler, G.; Jggi, A. Validation of the EGSIEM-REPRO GNSS Orbits and Satellite Clock Corrections. Remote Sens. 2020, 12, 2322. [Google Scholar] [CrossRef]
- Strugarek, D.; Sośnica, K.; Zajdel, R.; Bury, G. Detector-specific issues in Satellite Laser Ranging to Swarm-A/B/C satellites. Measurement 2021, 182, 109786. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Shen, Y.; Liu, X.; Sun, Y.; Kong, Q. Estimation of SLR station coordinates by means of SLR measurements to kinematic orbit of LEO satellites. Earth Planets Space 2018, 70, 201. [Google Scholar] [CrossRef] [Green Version]
- Marini, J.W.; Murray, C.W. Correction of Laser Range Tracking Data For Atmospheric Refraction at Elevations above 10 Degrees; NASA: Washington, DC, USA, 1973.
Model | Description | |
---|---|---|
Force models | Earth gravity field | EGM2008(120 × 120) [28] |
N-body | JPL DE405 | |
Solid earth tides and pole tide | IERS 2010 Conversations [29] | |
Ocean tides | FES2004 [30] | |
Relativity | IERS 2010 Conversations [29] | |
Data sets | Precise GPS orbits | Provided by IGS (Sampling rate: 15 min) |
Precise GPS clock offset products | Provided by IGS (Sampling rate: 30 s) | |
Earth orientation | Provided by CODE | |
GPS PCO/PCV models | igs14.atx | |
Weight for phase observations | cos2(z) 1 | |
Sampling of GPS observations | 10 s | |
Minimum number of observations per epoch | 6 | |
Elevation cutoff | 5° | |
Estimated parameters | Epoch state vector | Both KPOD and RDPOD will estimate |
Epoch clock offsets | Both KPOD and RDPOD will estimate | |
Phase ambiguities | Both KPOD and RDPOD will estimate with float-solution | |
Pseudo-random pulses | Only RDPOD will estimate every 15 min | |
RTN empirical acceleration | Only RDPOD will estimate every 6 min |
Satellite | Orbit | Average Residual RMS (mm) |
---|---|---|
Swarm-A | Kinematic | 4.74 |
Reduced dynamic | 7.01 | |
Swarm-B | Kinematic | 4.71 |
Reduced dynamic | 6.78 | |
Swarm-C | Kinematic | 4.76 |
Reduced dynamic | 7.66 | |
GRACE-C | Kinematic | 6.04 |
Reduced dynamic | 7.94 | |
GRACE-D | Kinematic | 5.52 |
Reduced dynamic | 7.84 |
Models/References | |
---|---|
Station coordinates | SLRF2014 |
Solid earth and pole tides | IERS2010 [29] |
Sea tide loading | FES2004 [30] |
Tropospheric refraction | Marini-Murry models [39] |
Relativity | IERS2010 [29] |
Eccentric correction of Swarm | Provided by ESA |
Eccentric correction of GRACE-FO | Provided by ILRS |
Elevation cutoff | 25° |
Satellite | Number of NPT | Orbit | Residuals’ Average RMS (cm) |
---|---|---|---|
Swarm-A | 718 | Kinematic | 3.39 |
Reduced dynamic | 2.25 | ||
Swarm-B | 1975 | Kinematic | 3.71 |
Reduced dynamic | 2.69 | ||
Swarm-C | 752 | Kinematic | 3.33 |
Reduced dynamic | 2.52 | ||
GRACE-C | 990 | Kinematic | 1.99 |
Reduced dynamic | 1.06 | ||
GRACE-D | 774 | Kinematic | 3.36 |
Reduced dynamic | 1.20 |
Satellite | Groups | 3D-RMS (cm) | R-RMS (cm) | T-RMS (cm) | N-RMS (cm) | Improvement |
---|---|---|---|---|---|---|
Swarm-A | Group 1 | 3.53 | 3.30 | 3.97 | 3.28 | 1.12% |
Group 2 | 3.57 | 3.39 | 3.99 | 3.29 | ||
Swarm-B | Group 1 | 4.03 | 3.46 | 4.39 | 4.18 | 1.95% |
Group 2 | 4.11 | 3.60 | 4.48 | 4.20 | ||
Swarm-C | Group 1 | 3.52 | 3.27 | 3.85 | 3.41 | 2.49% |
Group 2 | 3.61 | 3.42 | 3.92 | 3.45 | ||
GRACE-C | Group 1 | 2.39 | 2.81 | 2.56 | 1.63 | 1.65% |
Group 2 | 2.43 | 2.90 | 2.58 | 1.64 | ||
GRACE-D | Group 1 | 3.60 | 4.06 | 3.57 | 3.12 | 6.98% |
Group 2 | 3.87 | 4.56 | 3.74 | 3.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, P.; Jin, S.; Shi, Q. Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations. Sensors 2022, 22, 1071. https://doi.org/10.3390/s22031071
Luo P, Jin S, Shi Q. Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations. Sensors. 2022; 22(3):1071. https://doi.org/10.3390/s22031071
Chicago/Turabian StyleLuo, Peng, Shuanggen Jin, and Qiqi Shi. 2022. "Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations" Sensors 22, no. 3: 1071. https://doi.org/10.3390/s22031071
APA StyleLuo, P., Jin, S., & Shi, Q. (2022). Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations. Sensors, 22(3), 1071. https://doi.org/10.3390/s22031071