Load Position Estimation Method for Wearable Devices Based on Difference in Pulse Wave Arrival Time †
Abstract
:1. Introduction
- The proposed load position estimation method does not require users to perform any specific activities: it can identify sensor load positions when a user stands still for 10 s;
- We assume that the sensor device whose load position is to be identified is equipped with a pulse sensor, which consists of an infrared LED and a photoreflector. Typically, such sensors cost less than half a US dollar and weigh less than a gram. Wearable electrocardiographs are also attached to the user, and their use here is relatively practical;
- In an experiment with five subjects, we collected ECGs and pulse waves at 12 body parts in four sessions lasting three minutes each. We then used the collected data to evaluate the proposed method in both user-dependent and user-independent environments.
2. Related Work
2.1. Sensor Positions in HAR
2.2. Position Estimation for Wearable Devices
2.3. Position Estimation for Smartphones
2.4. ECG and Pulse Wave Sensing
3. Proposed Method
3.1. Overview of Proposed Method
3.2. ECG and Pulse Wave Measurement
3.3. ECG and Pulse Wave Peak Detection
- (1)
- Find all convex parts that satisfy . If the same values continue after a peak, i.e., if the top of a peak is flat, the midpoint of the flat interval is detected as a peak;
- (2)
- Delete peaks below a threshold value defined as , where is a coefficient that is empirically determined from the collected data; here, we set it to 0.5;
- (3)
- Consolidate peaks that are close in time; this may be completed in order from the highest peak, for example. Any other peaks in the 0.2 s periods to the left and right, are deleted. This is completed because the peak interval even at 200 bpm (the maximum human heart rate) is 0.3 s; therefore, two true peaks will never appear within the same 0.3 s window.
3.4. Peak Time Difference Calculation
3.5. Load Position Estimation
4. Evaluation
4.1. Performance Evaluation of R-Peak Detection Algorithm
4.1.1. Experimental Environment
4.1.2. R-Peak Detection Results
4.2. Data Collection
4.3. Preliminary Analysis of Peak Time Differences
4.4. Datasets and Environment
- User-dependent: To estimate the sensor position on the same subject but in a different session, we defined a user-dependent environment in which the training and test data came from different sessions for the same subject;
- User-independent: To estimate the sensor positions for different users, we defined in a user-independent environment in which the training and test data were from different subjects.
4.5. User-Dependent Experiment
4.5.1. Experimental Environment
- Minimum-value method (Mini-method): The body part that showed the smallest KL divergence value in the training data with respect to the input data session was estimated as the load position;
- Majority-vote method (Vote-method): The load position was estimated for each piece of training data, and the final position was estimated by a majority vote. When multiple body parts tied for the highest number of votes, the part with the smallest KL divergence was estimated as the load position.
4.5.2. Results for Position Estimation Accuracy When Varying Input Data Length
4.5.3. Results for Position Estimation Accuracy When Varying Number of Target Body Parts
4.6. User-Independent Experiment
4.6.1. Experimental Environment
4.6.2. Results for Position Estimation Accuracy When Varying Input Data Length
4.6.3. Results for Position Estimation Accuracy When Varying Number of Target Body Parts
4.7. Summary of Evaluation
5. Limitations
5.1. Estimation of Load Positions with Similar Peak Time Differences
5.2. Number of Target Body Parts for Load Position Estimation
5.3. Dataset Environment
5.4. User Dependence
5.5. Time Synchronization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Heart Rates for Each Subject
Body Part | Subject A | Subject B | Subject C | Subject D | Subject E | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age 24, M | Age 24, M | Age 22, M | Age 25, M | Age 22, F | ||||||||||||||||
S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | |
(1) | 71 | 72 | 86 | 78 | 75 | 61 | 69 | 67 | 78 | 60 | 75 | 66 | 77 | 67 | 87 | 77 | 64 | 76 | 68 | 65 |
(2) | 76 | 72 | 79 | 73 | 72 | 66 | 74 | 69 | 70 | 60 | 73 | 65 | 78 | 67 | 85 | 74 | 66 | 73 | 66 | 66 |
(3) | 71 | 73 | 82 | 76 | 74 | 69 | 74 | 63 | 71 | 65 | 70 | 63 | 80 | 63 | 82 | 78 | 62 | 65 | 68 | 65 |
(4) | 72 | 69 | 78 | 81 | 69 | 66 | 71 | 69 | 66 | 62 | 73 | 64 | 79 | 64 | 85 | 73 | 64 | 75 | 67 | 66 |
(5) | 74 | 79 | 72 | 79 | 74 | 69 | 95 | 74 | 69 | 62 | 84 | 66 | 83 | 76 | 95 | 77 | 73 | 83 | 73 | 69 |
(6) | 75 | 80 | 72 | 79 | 72 | 67 | 94 | 69 | 71 | 70 | 73 | 65 | 77 | 77 | 94 | 81 | 74 | 75 | 71 | 64 |
(7) | 74 | 68 | 79 | 72 | 70 | 71 | 99 | 76 | 65 | 69 | 79 | 64 | 83 | 73 | 93 | 77 | 73 | 78 | 68 | 66 |
(8) | 74 | 74 | 76 | 82 | 69 | 70 | 93 | 75 | 70 | 68 | 80 | 63 | 83 | 73 | 92 | 81 | 71 | 74 | 87 | 84 |
(9) | 74 | 66 | 69 | 74 | 61 | 69 | 95 | 72 | 66 | 61 | 77 | 68 | 79 | 74 | 87 | 84 | 70 | 79 | 70 | 70 |
(10) | 75 | 72 | 76 | 77 | 66 | 68 | 93 | 70 | 65 | 62 | 79 | 65 | 83 | 73 | 90 | 78 | 75 | 76 | 71 | 67 |
(11) | 71 | 68 | 80 | 84 | 74 | 77 | 98 | 75 | 65 | 67 | 73 | 65 | 82 | 79 | 83 | 80 | 83 | 79 | 71 | 67 |
(12) | 76 | 71 | 87 | 71 | 70 | 78 | 80 | 69 | 58 | 63 | 74 | 67 | 78 | 79 | 83 | 80 | 81 | 87 | 74 | 67 |
Appendix B. Peak Time Differences for Each Subject
Body Part | Subject A | Subject B | Subject C | Subject D | Subject E | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | |
(1) | 214 | 216 | 260 | 236 | 226 | 185 | 208 | 203 | 236 | 183 | 228 | 200 | 232 | 201 | 262 | 231 | 194 | 229 | 204 | 196 |
(2) | 228 | 218 | 239 | 219 | 217 | 201 | 223 | 209 | 211 | 181 | 220 | 197 | 236 | 201 | 256 | 224 | 201 | 221 | 201 | 200 |
(3) | 213 | 220 | 247 | 230 | 223 | 209 | 223 | 189 | 213 | 195 | 211 | 189 | 240 | 190 | 247 | 236 | 186 | 196 | 204 | 197 |
(4) | 217 | 209 | 234 | 243 | 208 | 199 | 215 | 208 | 200 | 188 | 219 | 194 | 238 | 192 | 255 | 221 | 193 | 227 | 202 | 198 |
(5) | 224 | 237 | 218 | 238 | 224 | 207 | 287 | 223 | 209 | 188 | 254 | 199 | 250 | 228 | 285 | 232 | 221 | 249 | 221 | 207 |
(6) | 226 | 242 | 216 | 239 | 216 | 203 | 282 | 210 | 216 | 211 | 220 | 195 | 233 | 232 | 284 | 243 | 225 | 225 | 213 | 192 |
(7) | 222 | 204 | 237 | 218 | 211 | 215 | 297 | 230 | 197 | 208 | 239 | 192 | 251 | 221 | 281 | 233 | 219 | 234 | 206 | 198 |
(8) | 222 | 222 | 230 | 246 | 209 | 211 | 280 | 224 | 212 | 205 | 241 | 191 | 249 | 219 | 277 | 243 | 215 | 232 | 209 | 203 |
(9) | 223 | 198 | 208 | 224 | 185 | 207 | 285 | 218 | 198 | 185 | 232 | 203 | 237 | 223 | 263 | 252 | 211 | 237 | 212 | 210 |
(10) | 227 | 216 | 228 | 233 | 199 | 205 | 281 | 210 | 194 | 188 | 238 | 196 | 249 | 220 | 271 | 236 | 227 | 230 | 215 | 202 |
(11) | 213 | 205 | 241 | 253 | 224 | 233 | 295 | 224 | 196 | 202 | 221 | 195 | 247 | 237 | 251 | 242 | 248 | 237 | 215 | 201 |
(12) | 228 | 214 | 263 | 215 | 213 | 235 | 241 | 210 | 175 | 189 | 222 | 203 | 235 | 237 | 250 | 240 | 245 | 264 | 222 | 203 |
References
- Toda, M.; Akita, J.; Sakurazawa, S.; Yanagihara, K.; Kunita, M.; Iwata, K. Wearable Biomedical Monitoring System using Textilenet. In Proceedings of the Tenth IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 119–120. [Google Scholar]
- Shen, C.l.; Kao, T.; Huang, C.t.; Lee, J.h. Wearable Band using a Fabric-based Sensor for Exercise ECG Monitoring. In Proceedings of the Tenth IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 143–144. [Google Scholar]
- Ouchi, K.; Suzuki, T.; Doi, M. Lifeminder: A Wearable Healthcare Support System Using User’s Context. In Proceedings of the IEEE International Workshop on Smart Appliances and Wearable Computing, Vienna, Austria, 2–5 July 2002; pp. 791–792. [Google Scholar]
- Van Laerhoven, K.; Gellersen, H.-W. Spine versus Porcupine: A Study in Distributed Wearable Activity Recognition. In Proceedings of the Eighth IEEE International Symposium on Wearable Computers, Arlington, VA, USA, 31 October–3 November 2004; pp. 142–149. [Google Scholar]
- Stiefmeier, T.; Ogris, G.; Junker, H.; Lukowics, P.; Tröster, G. Combining Motion Sensors and Ultrasonic Hands Tracking for Continuous Activity Recognition in a Maintenance Scenario. In Proceedings of the Eighth IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 97–104. [Google Scholar]
- Izuta, R.; Murao, K.; Terada, T.; Tsukamoto, M. Early Gesture Recognition Method with an Accelerometer. Int. J. Pervasive Comput. Commun. 2015, 11, 270–287. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.-L.; Holz, C.; Roseway, A.; Calvo, A.; Schmandt, C. DuoSkin: Rapidly Prototyping On-skin User Interfaces Using Skin-friendly Materials. In Proceedings of the 20th ACM International Symposium on Wearable Computers, Heidelberg, Germany, 12–16 September 2016; pp. 16–23. [Google Scholar]
- Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed Multifunctional Flexible Device with an Integrated Motion Sensor for Health Care Monitoring. Sci. Adv. 2016, 2, e1601473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunze, K.; Lucowicz, P. Sensor Placement Variations in Wearable Activity Recognition. IEEE Pervasive Comput. 2014, 13, 32–41. [Google Scholar] [CrossRef]
- Dementyev, A.; Kao, H.-L.; Choi, I.; Ajilo, D.; Xu, M.; Paradiso, J.A.; Schmandt, C.; Follmer, S. Rovables: Miniature On-Body Robots As Mobile Wearables. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 111–120. [Google Scholar]
- Dementyev, A.; Hernandez, J.; Follmer, S.; Choi, I.; Paradiso, J. SkinBot: A Wearable Skin Climbing Robot. In Proceedings of the Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology, Québec, QC, Canada, 22–25 October 2017; pp. 5–6. [Google Scholar]
- Bayati, H.; del R. Millán, J.; Chavarriaga, R. Unsupervised Adaptation to On-body Sensor Displacement in Acceleration-Based Activity Recognition. In Proceedings of the 15th International Symposium on Wearable Computers, San Francisco, CA, USA, 12–15 June 2011; pp. 71–78. [Google Scholar]
- Takata, M.; Fujimoto, M.; Yasumoto, K.; Nakamura, Y.; Arakawa, Y. Investigating the Capitalize Effect of Sensor Position for Training Type Recognition in a Body Weight Training Support System. In Proceedings of the Sixth International Workshop on Human Activity Sensing Corpus and Applications, Singapore, 8–12 October 2018; pp. 1404–1408. [Google Scholar]
- Fujinami, K.; Kouchi, S.; Xue, Y. Design and Implementation of an On-body Placement-Aware Smartphone. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012; pp. 69–74. [Google Scholar]
- Haskell, W.L.; Yee, M.C.; Evans, A.; Irby, P.J. Simultaneous measurement of heart rate and body motion to quantitate physical activity. Med. Sci. Sport. Exerc. 1993, 25, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.; Savard, G.K. Effects of mental state on heart rate and blood pressure variability in men and women. Clin. Physiol. 1995, 15, 557–569. [Google Scholar] [CrossRef]
- Yoshida, K.; Murao, K. Estimating load positions of wearable devices based on difference in pulse wave arrival time. In Proceedings of the 23rd International Symposium on Wearable Computers (ISWC ’19), New York, NY, USA, 9–13 September 2019; pp. 234–243. [Google Scholar]
- Murao, K.; Mogari, H.; Terada, T.; Tsukamoto, M. Evaluation Function of Sensor Position for Activity Recognition considering Wearability. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 623–632. [Google Scholar]
- Atallah, L.; Lo, B.; King, R.; Yang, G.-Z. Sensor Positioning for Activity Recognition using Wearable Accelerometers. Pers. Ubiquitous Comput. 2011, 5, 320–329. [Google Scholar] [CrossRef]
- Gjoreski, H.; Lustrek, M.; Gams, M. Accelerometer placement for posture recognition and fall detection. In Proceedings of the 2011 Seventh International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 47–54. [Google Scholar]
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013, 13, 9183–9200. [Google Scholar] [CrossRef] [Green Version]
- Pannurat, N.; Thiemjarus, S.; Nantajeewarawat, E.; Anantavrasilp, I. Analysis of optimal sensor positions for activity classification and application on a different data collection scenario. Sensors 2017, 17, 774. [Google Scholar] [CrossRef] [Green Version]
- Henpraserttae, A.; Thiemjarus, S.; Marukatat, S. Accurate Activity Recognition using a Mobile Phone regardless of Device Orientation and Location. In Proceedings of the 2011 International Conference on Body Sensor Networks, Dallas, TX, USA, 23–25 May 2011; pp. 41–46. [Google Scholar]
- Vahdatpour, A.; Amini, N.; Sarrafzadeh, M. On-body Device Localization for Health and Medical Monitoring Applications. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications, Seattle, WA, USA, 21–25 March 2011; pp. 37–44. [Google Scholar]
- Sztyler, T.; Stuckenschmidt, H.; Petrich, W. Position-aware Activity Recognition with Wearable Devices. Pervasive Mob. Comput. 2017, 38, 281–295. [Google Scholar] [CrossRef]
- Kunze, K.; Lukowicz, P.; Junker, H.; Tröster, G. Where am I: Recognizing On-body Positions of Wearable Sensors. In Proceedings of the International Symposium on Location- and Context-Awareness, Berlin, Germany, 12–13 May 2005; pp. 264–275. [Google Scholar]
- Coskun, D.; Incel, O.D.; Ozgovde, A. Phone Position/Placement Detection using Accelerometer: Impact on Activity Recognition. In Proceedings of the Tenth IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Singapore, 7–9 April 2015; pp. 1–6. [Google Scholar]
- Martín, H.; Bernardos, A.M.; Iglesias, J.; Casar, J.R. Activity Logging using Lightweight Classification Techniques in Mobile Devices. Pers. Ubiquitous Comput. 2013, 17, 675–695. [Google Scholar] [CrossRef]
- Park, J.g.; Patel, A.; Curtis, D.; Teller, S.; Ledlie, J. Online Pose Classification and Walking Speed Estimation using Handheld Devices. In Proceedings of the 14th ACM International Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1–6. [Google Scholar]
- Bieshaar, M. Where is my Device?-Detecting the Smart Device’s Wearing Location in the Context of Active Safety for Vulnerable Road Users. arXiv 2018, arXiv:1803.02097. [Google Scholar]
- Klein, I. Smartphone location recognition: A deep learning-based approach. Sensors 2019, 20, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dürichen, R.; Verma, K.D.; Yee, S.Y.; Rocznik, T.; Schmidt, P.; Bödecker, J.; Peters, C. Prediction of Electrocardiography Features Points Using Seismocardiography Data: A Machine Learning Approach. In Proceedings of the 22nd ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 96–99. [Google Scholar]
- Rajala, S.; Lindholm, H.; Taipalus, T. Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time. Physiol. Meas. 2018, 39, 075010. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.-Z.; Kang, J.M.; Kwon, Y.; Park, S.; Noh, S.; Kim, Y.; Park, J.; Hwang, S.W. Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time. IEEE J. Biomed. Health Inform. 2017, 22, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Simjanoska, M.; Gjoreski, M.; Gams, M.; Bogdanova, A.M. Cuffless blood pressure estimation using pressure pulse wave signals. Sensors 2018, 18, 4227. [Google Scholar]
- Simjanoska, M.; Gjoreski, M.; Gams, M.; Bogdanova, A.M. Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors 2018, 18, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Bezemer, R.; Long, X.; Muehlsteff, J.; Aarts, R.M. Systolic blood pressure estimation using PPG and ECG during physical exercise. Physiol. Meas. 2016, 37, 2154. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Zidelmal, Z.; Amirou, A.; Adnane, M.; Belouchrani, A. QRS detection based on wavelet coefficients. Comput. Methods Programs Biomed. 2012, 107, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Gavela, J.F.; Harris, M. Combining Algorithms in Automatic Detection of QRS Complexes in ECG Signals. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xie, X.; Wang, Y. ECG Enhancement and R-Peak Detection Based on Window Variability. Healthcare 2021, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Mittal, M.; Mittal, V. An Efficient Low Computational Cost Method of R-Peak Detection. Wirel. Pers. Commun. 2021, 118, 359–381. [Google Scholar] [CrossRef]
- Munakata, M. Brachial-Ankle Pulse Wave Velocity: Background, Method, and Clinical Evidence. Pulse 2016, 3, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Record ID | [%] | [%] | AVE[ms] | SD[ms] | |||
---|---|---|---|---|---|---|---|
100 | 2272 | 3 | 1 | 99.96 | 99.87 | 1.49 | 1.54 |
101 | 1791 | 69 | 74 | 96.03 | 96.29 | −1.82 | 1.35 |
102 | 2084 | 3 | 103 | 95.29 | 99.86 | −3.92 | 10.82 |
103 | 1999 | 0 | 85 | 95.92 | 100 | 1.91 | 1.29 |
104 | 1187 | 355 | 1042 | 53.25 | 77.98 | −4.02 | 11.82 |
105 | 204 | 262 | 2368 | 7.93 | 43.78 | 0.23 | 8.37 |
106 | 1272 | 53 | 755 | 62.75 | 96.0 | 0.48 | 3.10 |
107 | 1951 | 150 | 186 | 91.30 | 92.86 | −9.60 | 3.58 |
108 | 20 | 428 | 1743 | 1.13 | 4.46 | −7.92 | 18.91 |
109 | 1460 | 40 | 1072 | 57.66 | 97.33 | −3.03 | 4.54 |
111 | 66 | 106 | 2058 | 3.11 | 38.37 | −2.99 | 5.06 |
112 | 968 | 108 | 1571 | 38.13 | 89.96 | 0.71 | 1.27 |
113 | 1795 | 42 | 0 | 100 | 97.71 | 1.57 | 1.38 |
114 | 69 | 228 | 1810 | 3.67 | 23.23 | 10.31 | 14.16 |
115 | 1939 | 0 | 14 | 99.28 | 100 | 3.31 | 1.09 |
116 | 1396 | 159 | 1016 | 57.88 | 89.77 | 2.33 | 3.33 |
117 | 564 | 186 | 971 | 36.74 | 75.2 | −17.16 | 6.80 |
118 | 610 | 76 | 1668 | 26.78 | 88.92 | 3.67 | 4.55 |
119 | 1983 | 750 | 4 | 99.80 | 77.56 | 1.86 | 2.13 |
121 | 163 | 276 | 1700 | 8.75 | 37.13 | 0.82 | 2.09 |
122 | 2473 | 2 | 3 | 99.88 | 99.12 | 0.84 | 1.68 |
123 | 1514 | 0 | 4 | 99.74 | 100 | 3.16 | 1.03 |
124 | 1499 | 93 | 120 | 92.59 | 94.16 | −1.68 | 2.21 |
200 | 307 | 93 | 2294 | 11.80 | 76.75 | 2.93 | 2.33 |
201 | 364 | 108 | 1599 | 18.54 | 77.12 | 2.92 | 1.11 |
202 | 950 | 0 | 1186 | 44.48 | 100 | 2.02 | 1.27 |
203 | 183 | 371 | 2797 | 6.14 | 33.03 | −1.52 | 8.40 |
205 | 2561 | 18 | 95 | 96.42 | 99.30 | 1.17 | 2.05 |
207 | 18 | 319 | 1842 | 0.97 | 5.34 | 0.31 | 21.63 |
208 | 505 | 148 | 2450 | 17.09 | 77.34 | 5.66 | 7.86 |
209 | 2804 | 6 | 201 | 93.31 | 99.79 | 2.49 | 1.13 |
210 | 2 | 75 | 2648 | 0.08 | 2.60 | 5.56 | 2.78 |
212 | 1880 | 0 | 868 | 68.41 | 100 | 2.08 | 1.24 |
213 | 3223 | 97 | 28 | 99.14 | 97.08 | 0.07 | 6.36 |
214 | 2127 | 91 | 135 | 94.03 | 95.90 | 2.49 | 3.14 |
215 | 159 | 27 | 3204 | 4.73 | 85.48 | 2.18 | 2.58 |
217 | 341 | 145 | 1867 | 15.44 | 70.16 | −4.52 | 12.07 |
219 | 2119 | 124 | 35 | 98.38 | 94.47 | 0.74 | 2.44 |
220 | 2048 | 0 | 0 | 100 | 100 | 3.41 | 1.40 |
221 | 2310 | 83 | 117 | 95.18 | 96.53 | 1.57 | 2.25 |
222 | 945 | 4 | 1538 | 38.06 | 99.58 | 0.88 | 1.59 |
223 | 1984 | 0 | 621 | 76.16 | 100 | 4.31 | 2.04 |
228 | 285 | 156 | 1768 | 13.88 | 64.63 | 0.54 | 2.12 |
230 | 1856 | 1 | 400 | 82.27 | 99.95 | 3.07 | 1.06 |
231 | 1565 | 2 | 6 | 99.62 | 99.87 | −0.42 | 1.12 |
232 | 1183 | 4 | 597 | 66.46 | 99.66 | 3.11 | 1.18 |
233 | 2244 | 45 | 835 | 72.88 | 98.03 | 0.52 | 5.25 |
234 | 2347 | 69 | 406 | 85.25 | 97.14 | 0.70 | 1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, K.; Murao, K. Load Position Estimation Method for Wearable Devices Based on Difference in Pulse Wave Arrival Time. Sensors 2022, 22, 1090. https://doi.org/10.3390/s22031090
Yoshida K, Murao K. Load Position Estimation Method for Wearable Devices Based on Difference in Pulse Wave Arrival Time. Sensors. 2022; 22(3):1090. https://doi.org/10.3390/s22031090
Chicago/Turabian StyleYoshida, Kazuki, and Kazuya Murao. 2022. "Load Position Estimation Method for Wearable Devices Based on Difference in Pulse Wave Arrival Time" Sensors 22, no. 3: 1090. https://doi.org/10.3390/s22031090
APA StyleYoshida, K., & Murao, K. (2022). Load Position Estimation Method for Wearable Devices Based on Difference in Pulse Wave Arrival Time. Sensors, 22(3), 1090. https://doi.org/10.3390/s22031090