Uncertainties in Atomic Data for Modeling Astrophysical Charge Exchange Plasmas
Abstract
:1. Introduction
2. Methods and Results
2.1. Total Cross Sections
2.2. Cross Sections for the Peak nl Shells
2.3. Line Ratios
3. Discussion and Ending Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lisse, C.M.; Denner, l.K.; Englhauser, J.; Harden, M.; Marshall, F.E.; Mumma, M.J.; Petre, R.; Pye, J.P.; Ricketts, M.J.; Schmitt, J.; et al. Discovery of X-ray and Extreme Ultraviolet Emission from Comet C/Hyakutake 1996 B2. Science 1996, 274, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Cravens, T.E. Comet Hyakutake X-ray source: Charge transfer of solar wind heavy ions. Geophys. Res. Lett. 1997, 24, 105–108. [Google Scholar] [CrossRef]
- Bodewits, D.; Christian, D.J.; Torney, M.; Dryer, M.; Lisse, C.M.; Dennerl, K.; Zurbuchen, T.H.; Wolk, S.J.; Tielens, A.G.G.M.; Hoekstra, R. Spectral analysis of the Chandracomet survey. Astron. Astrophys. 2007, 469, 1183–1195. [Google Scholar] [CrossRef] [Green Version]
- Branduardi-Raymont, G.; Bhardwaj, A.; Elsner, R.F.; Gladstone, G.R.; Ramsay, G.; Rodriguez, P.; Soria, R.; Waite, J.H., Jr.; Cravens, T.E. A study of Jupiter’s aurorae with XMM-Newton. Astron. Astrophys. 2006, 463, 761–774. [Google Scholar] [CrossRef] [Green Version]
- Katsuda, S.; Tsunemi, H.; Mori, K.; Uchida, H.; Kosugi, H.; Kimura, M.; Nakajima, H.; Takakura, S.; Petre, R.; Hewitt, J.W.; et al. Possible charge-exchange X-ray emission in the cygnus loop detected withsuzaku. Astrophys. J. 2011, 730, 24. [Google Scholar] [CrossRef] [Green Version]
- Cumbee, R.S.; Henley, D.B.; Stancil, P.C.; Shelton, R.L.; Nolte, J.L.; Wu, Y.; Schultz, D.R. Can charge exchange explain anomalous soft X-ray emission in the cygnus loop? Astrophys. J. 2014, 787, L31. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Q.D.; Li, Z.; Peterson, J.R. X-ray spectroscopy of the hot gas in the M31 bulge. Mon. Not. R. Astron. Soc. 2010, 404, 1879. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, Q.D.; Ji, L.; Smith, R.K.; Foster, A.R.; Zhou, X. Spectral modeling of the charge-exchange X-ray emission from M82. Astrophys. J. 2014, 794, 61. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Mao, J.; O’Dea, C.P.; Baum, S.A.; Mehdipour, M.; Kaastra, J.S. Charge exchange in the ultraviolet: Implication for interacting clouds in the core of NGC 1275. Astron. Astrophys. 2017, 601, A45. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Kaastra, J.; Raassen, A.J.J.; Mullen, P.D.; Cumbee, R.; Lyons, D.; Stancil, P.C. A novel scenario for the possible X-ray line feature at ∼3.5 keV. Astron. Astrophys. 2015, 584, L11. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Mao, J.; de Plaa, J.; Raassen, A.J.J.; Shah, C.; Kaastra, J. Charge exchange in galaxy clusters. Astron. Astrophys. 2018, 611, A26. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Foster, A.; Brickhouse, N. Approximating the X-ray spectrum emitted from astrophysical charge exchange. Astron. Nachrichten 2012, 333, 301–304. [Google Scholar] [CrossRef]
- Gu, L.; Kaastra, J.; Raassen, A.J.J. Plasma code for astrophysical charge exchange emission at X-ray wavelengths. Astron. Astrophys. 2016, 588, A52. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, H.; Akimoto, F.; Allen, S.W.; Angelini, L.; Audard, M.; Awaki, H.; Axelsson, M.; Bamba, A.; Bautz, M.W.; Blandford, R.; et al. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi. Publ. Astron. Soc. Jpn. 2018, 70, 12. [Google Scholar] [CrossRef]
- Bodewits, D.; Juhász, Z.; Hoekstra, R.; Tielens, A.G.G.M. Catching Some Sun: Probing the Solar Wind with Cometary X-ray and Far-Ultraviolet Emission. Astrophys. J. 2004, 606, L81–L84. [Google Scholar] [CrossRef]
- Dijkkamp, D.; Gordeev, Y.S.; Brazuk, A.; Drentje, A.G.; De Heer, F.J. Selective single-electron capture into (n, l) subshells in slow collisions of C6+, N6+, O6+ and Ne6+ with He, H2 and Ar. J. Phys. B At. Mol. Phys. 1985, 18, 737–756. [Google Scholar] [CrossRef]
- Trassinelli, M.; Prigent, C.; Lamour, E.; Mezdari, F.; Mérot, J.; Reuschl, R.; Rozet, J.-P.; Steydli, S.; Vernhet, D. Investigation of slow collisions for (quasi) symmetric heavy systems: What can be extracted from high resolution X-ray spectra. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 085202. [Google Scholar] [CrossRef]
- Beiersdorfer, P. Highly charged ions in magnetic fusion plasmas: Research opportunities and diagnostic necessities. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 144017. [Google Scholar] [CrossRef]
- Lepson, J.K.; Beiersdorfer, P.; Bitter, M.; Roquemore, A.L.; Hill, K.; Kaita, R. Charge exchange produced emission of carbon in the extreme ultraviolet spectral region. J. Phys. Conf. Ser. 2015, 583, 012012. [Google Scholar] [CrossRef] [Green Version]
- Rosmej, F.B.; Lisitsa, V.S.; Schott, R.; Dalimier, E.; Riley, D.; Delserieys, A.; Renner, O.; Krousky, E. Charge-exchange-driven X-ray emission from highly ionized plasma jets. EPL Europhys. Lett. 2006, 76, 815–821. [Google Scholar] [CrossRef]
- Ali, R.; Beiersdorfer, P.; Harris, C.L.; Neill, P.A. Charge-exchange X-ray spectra: Evidence for significant contributions from radiative decays of doubly excited states. Phys. Rev. A 2016, 93, 012711. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Neill, P.A.; Beiersdorfer, P.; Harris, C.L.; Raković, M.J.; Wang, J.G.; Schultz, D.R.; Stancil, P.C. On the Significance of the Contribution of Multiple-Electron Capture Processes to Cometary X-ray Emission. Astrophys. J. 2005, 629, L125–L128. [Google Scholar] [CrossRef]
- Ali, R.; Neill, P.A.; Beiersdorfer, P.; Harris, C.L.; Schultz, D.R.; Stancil, P.C. Critical test of simulations of charge-exchange-induced X-ray emission in the solar system. Astrophys. J. 2010, 716, L95–L98. [Google Scholar] [CrossRef]
- Fischer, D.; Feuerstein, B.; Dubois, R.D.; Moshammer, R.; López-Urrutia, J.C.; Draganic, I.; Lörch, H.; Perumal, A.N.; Ullrich, J. State-resolved measurements of single-electron capture in slow Ne7+-and Ne8+-helium collisions. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 1369. [Google Scholar] [CrossRef]
- Xue, Y.; Ginzel, R.; Krauß, A.; Bernitt, S.; Schöffler, M.; Kühnel, K.U.; López-Urrutia, J.R.C.; Moshammer, R.; Cai, X.; Ullrich, J.; et al. Kinematically complete study of electron transfer and rearrangement processes in slow Ar16+-Ne collisions. Phys. Rev. A 2014, 90, 052720. [Google Scholar] [CrossRef]
- Allen, F.I.; Biedermann, C.; Radtke, R.; Fussmann, G.; Fritzsche, S. Energy dependence of angular momentum capture states in charge exchange collisions between slow highly charged argon ions and argon neutrals. Phys. Rev. A 2008, 78, 032705. [Google Scholar] [CrossRef] [Green Version]
- Beiersdorfer, P.; Olson, R.E.; Brown, G.V.; Chen, H.; Harris, C.L.; Neill, P.A.; Schweikhard, L.; Utter, S.B.; Widmann, K. X-ray Emission Following Low-Energy Charge Exchange Collisions of Highly Charged Ions. Phys. Rev. Lett. 2000, 85, 5090–5093. [Google Scholar] [CrossRef]
- Betancourt-Martinez, G.L.; Beiersdorfer, P.; Brown, G.; Kelley, R.L.; Kilbourne, C.A.; Koutroumpa, D.; Leutenegger, M.; Porter, F. Observation of highly disparate K-shell X-ray spectra produced by charge exchange with bare mid-Zions. Phys. Rev. A 2014, 90, 052723. [Google Scholar] [CrossRef] [Green Version]
- Dobrodey, S. The Faculty of Physics and Astronomy. Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 2019. [Google Scholar]
- Leutenegger, M.A.; Beiersdorfer, P.; Brown, G.; Kelley, R.L.; Kilbourne, C.A.; Porter, F.S. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-Like Phosphorus Following Charge Exchange with Molecular Hydrogen. Phys. Rev. Lett. 2010, 105, 063201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, C.; Dobrodey, S.; Bernitt, S.; Steinbrügge, R.; López-Urrutia, J.R.C.; Gu, L.; Kaastra, J. Laboratory measurements compellingly support a charge-exchange mechanism for the “dark matter” ∼3.5 kev X-ray line. Astrophys. J. 2016, 833, 52. [Google Scholar] [CrossRef] [Green Version]
- Wargelin, B.J.; Beiersdorfer, P.; Neill, P.A.; Olson, R.E.; Scofield, J.H. Charge-Exchange Spectra of Hydrogenic and He-like Iron. Astrophys. J. 2005, 634, 687–697. [Google Scholar] [CrossRef]
- Betancourt-Martinez, G.L.; Beiersdorfer, P.; Brown, G.V.; Cumbee, R.S.; Hell, N.; Kelley, R.L.; Kilbourne, C.A.; Leutenegger, M.A.; Lockard, T.E.; Porter, F.S. High-resolution Charge Exchange Spectra with L-shell Nickel Show Striking Differences from Models. Astrophys. J. Lett. 2018, 868, L17. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.W.; Xu, C.X.; Zhang, R.T.; Zhu, X.L.; Feng, W.T.; Gu, L.; Liang, G.Y.; Guo, D.L.; Gao, Y.; Zhao, D.M.; et al. Measurement of n-resolved State-selective Charge Exchange in Ne(8,9)+ Collision with He and H2. Astrophys. J. Suppl. Ser. 2021, 253, 13. [Google Scholar] [CrossRef]
- Kaastra, J.S.; Mewe, R.; Nieuwenhuijzen, H. SPEX: A new code for spectral analysis of X & UV spectra. In UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas; University of California: Berkeley, CA, USA, 1996; pp. 411–414. [Google Scholar]
- Mullen, P.D.; Cumbee, R.S.; Lyons, D.; Stancil, P.C. Charge exchange-induced X-ray emission of fe xxv and fe xxvi via a streamlined model. Astrophys. J. Suppl. Ser. 2016, 224, 31. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Stancil, P.C.; Schultz, D.R.; Hui, Y.; Liebermann, H.P.; Buenker, R.J. Theoretical investigation of total and state-dependent charge exchange in O6+ collisions with atomic hydrogen. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 235201. [Google Scholar] [CrossRef]
- Wu, Y.; Stancil, P.C.; Liebermann, H.P.; Funke, P.; Rai, S.N.; Buenker, R.J.; Schultz, D.R.; Hui, Y.; Draganic, I.N.; Havener, C.C. Theoretical investigation of charge transfer between N6+ and atomic hydrogen. Phys. Rev. A 2011, 84, 022711. [Google Scholar] [CrossRef]
- Nolte, J.L.; Stancil, P.C.; Liebermann, H.P.; Buenker, R.J.; Hui, Y.; Schultz, D.R. Final-state-resolved charge exchange in C5+ collisions with H. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 245202. [Google Scholar] [CrossRef]
- Goffe, T.V.; Shah, M.B.; Gilbody, H.B. One-electron capture and loss by fast multiply charged boron and carbon ions in H and H2. J. Phys. B At. Mol. Phys. 1979, 12, 3763–3773. [Google Scholar] [CrossRef]
- Phaneuf, R.A.; Alvarez, I.; Meyer, F.W.; Crandall, D.H. Electron capture in low-energy collisions of Cq+ and Oq+ with H and H2. Phys. Rev. A 1982, 26, 1892–1906. [Google Scholar] [CrossRef]
- Panov, M.N.; A Basalaev, A.; O Lozhkin, K. Interaction of Fully Stripped, Hydrogenlike and Heliumlike C, N, O, Ne and Ar Ions with H and He Atoms and H2 Molecules. Phys. Scr. 1983, T3, 124–130. [Google Scholar] [CrossRef]
- Meyer, F.W.; Phaneuf, R.A.; Kim, H.J.; Hvelplund, P.; Stelson, P.H. Single-electron-capture cross sections for multiply charged O, Fe, Mo, Ta, W, and Au ions incident on H and H2 at intermediate velocities. Phys. Rev. A 1979, 19, 515–525. [Google Scholar] [CrossRef]
- Shah, M.B.; Goffe, T.V.; Gilbody, H.B. Electron capture and loss by fast lithium ions in H and H2. J. Phys. B At. Mol. Phys. 1978, 11, L233. [Google Scholar] [CrossRef]
- Seim, W.; Muller, A.; Wirkner-Bott, I.; Salzborn, E. Electron capture by Lii+ (i = 2,3), Ni+ and Nei+ (i = 2, 3, 4, 5) ions from atomic hydrogen. J. Phys. B At. Mol. Phys. 1981, 14, 3475–3491. [Google Scholar] [CrossRef]
- McCullough, R.W.; Nutt, W.L.; Gilbody, H.B. One-electron capture by slow doubly charged ions in h and H2. J. Phys. B At. Mol. Phys. 1979, 12, 4159–4169. [Google Scholar] [CrossRef]
- Crandall, D.H.; Phaneuf, R.A.; Meyer, F.W. Electron capture by slow multicharged ions in atomic and molecular hydrogen. Phys. Rev. A 1979, 19, 504–514. [Google Scholar] [CrossRef]
- Gardner, L.D.; Bayfield, J.E.; Koch, P.M.; Sellin, I.A.; Pegg, D.J.; Peterson, R.S.; Crandall, D.H. Electron-capture collisions at keV energies of boron and other multiply charged ions with atoms and molecules. II. Atomic hydrogen. Phys. Rev. A 1980, 21, 1397–1402. [Google Scholar] [CrossRef]
- Phaneuf, R.A.; Meyer, F.W.; McKnight, R.H. Single-electron capture by multiply charged ions of carbon, nitrogen, and oxygen in atomic and molecular hydrogen. Phys. Rev. A 1978, 17, 534–545. [Google Scholar] [CrossRef]
- Nutt, W.L.; McCullough, R.W.; Gilbody, H.B. Electron capture by C2+ and Ti2+ ions in H and H2. J. Phys. B At. Mol. Phys. 1978, 11, L181–L184. [Google Scholar] [CrossRef]
- Sant’Anna, M.; Melo, W.S.; Santos, A.; Shah, M.B.; Sigaud, G.M.; Montenegro, E.C. Absolute measurements of electron capture cross sections of C3+ from atomic and molecular hydrogen. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 353–364. [Google Scholar] [CrossRef]
- Ciric, D.; Brazuk, A.; Dijkkamp, D.; De Heers, F.J.; Winter, H. State-selective electron capture in C3+-H, H2 collisions (0.7–4.6 keV amu−1) studied by photon spectroscopy. J. Phys. B At. Mol. Phys. 1985, 18, 3629–3639. [Google Scholar] [CrossRef]
- McCullough, R.W.; Wilkie, F.G.; Gilbody, H.B. State-selective electron capture by slow C2+ and C3+ ions in atomic hydrogen. J. Phys. B At. Mol. Phys. 1984, 17, 1373–1382. [Google Scholar] [CrossRef]
- Dijkkamp, D.; Ciric, D.; Vileg, E.; De Boer, A.; De Heer, F.J. Subshell-selective electron capture in collisions of C4+, N5+, O6+ with H, H2 and He. J. Phys. B At. Mol. Phys. 1985, 18, 4763–4793. [Google Scholar] [CrossRef]
- Fritsch, W.; Lin, C.D. Atomic-basis study of electron transfer into C3+(nl) orbitals in C4++H and C4++Li collisions. J. Phys. B At. Mol. Phys. 1984, 17, 3271–3278. [Google Scholar] [CrossRef]
- Hoekstra, R.; Beijers, J.P.M.; Schlatmann, A.R.; Morgenstern, R.; de Heer, F.J. State-selective charge transfer in slow collisions ofC4+with H and H2. Phys. Rev. A 1990, 41, 4800–4808. [Google Scholar] [CrossRef]
- Stebbings, R.F.; Fite, W.L.; Hummer, D.G. Charge Transfer between Atomic Hydrogen and N+ and O+. J. Chem. Phys. 1960, 33, 1226. [Google Scholar] [CrossRef]
- Fite, W.L.; Smith, A.C.H.; Stebbings, R.F. Charge transfer in collisions involving symmetric and asymmetric resonance. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962, 268, 527–536. [Google Scholar] [CrossRef]
- Havener, C.C.; Huq, M.S.; Krause, H.F.; Schulz, P.A.; Phaneuf, R.A. Merged-beams measurements of electron-capture cross sections for O5++H at electron-volt energies. Phys. Rev. A 1989, 39, 1725–1740. [Google Scholar] [CrossRef] [PubMed]
- Huber, B.A. Electron capture by slow multiply charged Ar and Ne ions from atomic hydrogen. Eur. Phys. J. A 1981, 299, 307–309. [Google Scholar] [CrossRef]
- Kim, H.J.; Phaneuf, R.A.; Meyer, F.W.; Stelson, P.H. Single electron capture by multiply charged 28Si ions in atomic and molecular hydrogen. Phys. Rev. A 1978, 17, 854–858. [Google Scholar] [CrossRef]
- Beijers, J.P.M.; Hoekstra, R.; Morgenstern, R. State-selective charge transfer in slow collisions of with H and. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 1397–1408. [Google Scholar] [CrossRef]
- Rejoub, R.; Bannister, M.E.; Havener, C.C.; Savin, D.W.; Verzani, C.J.; Wang, J.G.; Stancil, P.C. Electron capture by Ne3+ ions from atomic hydrogen. Phys. Rev. A 2004, 69, 052704. [Google Scholar] [CrossRef]
- Havener, C.C.; Rejoub, R.; Vane, C.R.; Krause, H.F.; Savin, D.W.; Schnell, M.; Wang, J.G.; Stancil, P.C. Electron capture by Ne4+ ions from atomic hydrogen. Phys. Rev. A 2005, 71, 034702. [Google Scholar] [CrossRef]
- Bruhns, H.; Kreckel, H.; Savin, D.W.; Seely, D.G.; Havener, C.C. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen. Phys. Rev. A 2008, 77, 064702. [Google Scholar] [CrossRef] [Green Version]
- Havener, C.C.; Muller, A.; Van Emmichoven, P.A.Z.; Phaneuf, R.A. Low-energy electron capture by C3+ from hydrogen using merged beams. Phys. Rev. A 1995, 51, 2982–2988. [Google Scholar] [CrossRef]
- Mroczkowski, T.; Savin, D.W.; Rejoub, R.; Krstić, P.S.; Havener, C.C. Electron capture by Ne2+ ions from atomic hydrogen. Phys. Rev. A 2003, 68, 032721. [Google Scholar] [CrossRef] [Green Version]
- Pieksma, M.; Havener, C.C. Low-energy electron capture by B4+ ions from hydrogen atoms. Phys. Rev. A 1998, 57, 1892–1894. [Google Scholar] [CrossRef]
- Folkerts, L.; Haque, M.A.; Havener, C.C.; Shimakura, N.; Kimura, M. Low-energy electron capture by N4+ ions from H atoms: Experimental study using merged beams and theoretical analysis by molecular representation. Phys. Rev. A 1995, 51, 3685–3692. [Google Scholar] [CrossRef] [PubMed]
- Draganić, I.N.; Seely, D.G.; Havener, C.C. Low-energy charge transfer between C5+ and atomic hydrogen. Phys. Rev. A 2011, 83, 054701. [Google Scholar] [CrossRef]
- Cabrera-Trujillo, R.; Bruhns, H.; Savin, D.W. Acceptance-angle effects on the charge transfer and energy-loss cross sections for collisions of C4+ with atomic hydrogen. Phys. Rev. A 2020, 101, 052708. [Google Scholar] [CrossRef]
- Greenwood, J.B.; Williams, I.D.; Smith, S.J.; Chutjian, A. Measurement of Charge Exchange and X-ray Emission Cross Sections for Solar Wind–Comet Interactions. Astrophys. J. 2000, 533, L175–L178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janev, R.; Winter, H. State-selective electron capture in atom-highly charged ion collisions. Phys. Rep. 1985, 117, 265–387. [Google Scholar] [CrossRef]
- Otranto, S.; Olson, R.E.; Beiersdorfer, P. X-ray emission cross sections following charge exchange by multiply charged ions of astrophysical interest. Phys. Rev. A 2006, 73, 022723. [Google Scholar] [CrossRef] [Green Version]
- Andrianarijaona, V.M.; Wulf, D.; McCammon, D.; Seely, D.G.; Havener, C.C. Radiance line ratios Ly-β/Ly-α, Ly-γ/Ly-α, Ly-δ/Ly-α, and Ly-ϵ/Ly-α for soft X-ray emissions following charge exchange between C6+ and Kr. Nucl. Instrum, Methods Phys. Res. B 2015, 350, 122. [Google Scholar] [CrossRef] [Green Version]
- Seely, D.G.; Andrianarijaona, V.M.; Wulf, D.; Morgan, K.; McCammon, D.; Fogle, M.; Stancil, P.C.; Zhang, R.T.; Havener, C.C. Line ratios for soft-X-ray emission following charge exchange between O8+ and Kr. Phys. Rev. A 2017, 95, 052704. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.C.K.; Kirchner, T. Lyman line ratios in charge-exchange collisions of C6+ and O8+ ions with hydrogen and krypton atoms. Phys. Rev. A 2018, 97, 062705. [Google Scholar] [CrossRef]
- Gu, L.; Raassen, A.J.J.; Mao, J.; de Plaa, J.; Shah, C.; Pinto, C.; Werner, N.; Simionescu, A.; Mernier, F.; Kaastra, J. X-ray spectra of the Fe-L complex. Astron. Astrophys. 2019, 627, A51. [Google Scholar] [CrossRef]
- Gu, L.; Shah, C.; Mao, J.; Raassen, A.; De Plaa, J.; Pinto, C.; Akamatsu, H.; Werner, N.; Simionescu, A.; Mernier, F.; et al. X-ray spectra of the Fe-L complex. II. Atomic data constraints from the EBIT experiment and X-ray grating observations of Capella. Astron. Astrophys. 2020, 641, 93. [Google Scholar] [CrossRef]
- Wargelin, B.J.; Beiersdorfer, P.; Brown, G.V. EBIT charge-exchange measurements and astrophysical applications. Can. J. Phys. 2008, 86, 151–169. [Google Scholar] [CrossRef] [Green Version]
- Betancourt-Martinez, G. Benchmarking Charge Exchange Theory in the Dawning Era of Space-Born High-Resolution X-ray Spectrometers. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2017. [Google Scholar]
- Leutenegger, M.; Beiersdorfer, P.; Betancourt-Martinez, G.L.; Brown, G.; Hell, N.; Kelley, R.L.; Kilbourne, C.A.; Magee, E.W.; Porter, F.S. Characterization of an atomic hydrogen source for charge exchange experiments. Rev. Sci. Instrum. 2016, 87, 11E516. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wei, L.; Wang, B.; Ren, B.; Yu, W.; Zhang, Y.; Zou, Y.; Chen, L.; Xiao, J.; Wei, B. Measurement of Absolute Single and Double Electron Capture Cross Sections for O6+ Ion Collisions with CO2, CH4, H2, and N2. Astrophys. J. Suppl. Ser. 2021, 253, 6. [Google Scholar] [CrossRef]
- Maejima, H.; Angelini, L.; Costantini, E.; Edison, M.R.; Herder, J.-W.D.; Ishisaki, Y.; Matsushita, K.; Mori, K.; Guainazzi, M.; Kelley, R.L.; et al. Concept of the X-ray Astronomy Recovery Mission. Space Telesc. Instrum. 2018 Ultrav. Gamma Ray 2018, 10699, 1069922. [Google Scholar]
- Nandra, K.; Barret, D.; Barcons, X.; Fabian, A.; Herder, J.W.D.; Piro, L.; Watson, M.; Adami, C.; Aird, J.; Afonso, J.M.; et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv 2013, arXiv:1306.2307. [Google Scholar]
- Bautista, M.; Fivet, V.; Quinet, P.; Dunn, J.P.; Gull, T.R.; Kallman, T.; Mendoza, C. Uncertainties in atomic data and their propagation through spectral models. I. Astrophys. J. 2013, 770, 15. [Google Scholar] [CrossRef] [Green Version]
- Loch, S.; Pindzola, M.; Ballance, C.; Witthoeft, M.; Foster, A.; Smith, R.; O’Mullane, M. The propagation of uncertainties in atomic data through collisional-radiative models. In Proceedings of the Eighth International Conference on Atomic and Molecular Data and Their Applications: ICAMDATA-2012, Gaithersburg, MD, USA, 30 September–4 October 2012; Volume 1545, p. 242. [Google Scholar] [CrossRef]
- Yu, X.; Del Zanna, G.; Stenning, D.C.; Cisewski-Kehe, J.; Kashyap, V.L.; Stein, N.; Van Dyk, D.A.; Warren, H.P.; Weber, M.A. Incorporating Uncertainties in Atomic Data into the Analysis of Solar and Stellar Observations: A Case Study in Fe xiii. Astrophys. J. 2018, 866, 146. [Google Scholar] [CrossRef] [Green Version]
- Foster, A.; Heuer, K. PyAtomDB: Extending the AtomDB Atomic Database to Model New Plasma Processes and Uncertainties. Atoms 2020, 8, 49. [Google Scholar] [CrossRef]
- Morisset, C.; Luridiana, V.; García-Rojas, J.; Gómez-Llanos, V.; Bautista, M.; Mendoza, A.C. Atomic Data Assessment with PyNeb. Atoms 2020, 8, 66. [Google Scholar] [CrossRef]
- Mehdipour, M.; Kaastra, J.; Kallman, T. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays. Astron. Astrophys. 2016, 596, A65. [Google Scholar] [CrossRef] [Green Version]
Reference | Type | Ion | Theory Data |
---|---|---|---|
Shah et al. [44] | total | (q = 1–3) | G16 |
Seim et al. [45] | total | (q = 2–3), (q = 2–5), (q = 3–5) | G16 |
Goffe et al. [40] | total | (q = 1–5), (q = 1–4) | G16 |
Goffe et al. [40] | total | (q = 5, 6), | G16, MCLZ, RCMD |
McCullough et al. [46] | total | , , , | G16 |
Crandall et al. [47] | total | (q = 2–5), (q = 3, 4), (q = 3, 4), (q = 5, 6) | G16 |
Gardner et al. [48] | total | (q = 2–4), (q = 2–4), (q = 2–5), (q = 2–5) | G16 |
Phaneuf et al. [49] | total | (q = 1–4), (q = 1–5), (q = 1–5), (q = 2–7) | G16 |
Nutt et al. [50] | total | G16 | |
Phaneuf et al. [41] | total | (q = 3, 4), (q = 2–6) | G16 |
Phaneuf et al. [41] | total | (q = 5, 6) | G16, MCLZ, RCMD |
Sant’Anna et al. [51] | total | G16 | |
Ciric et al. [52] | total,nl | (q = 3, 4), , | G16 |
McCullough et al. [53] | total,nl | G16 | |
Panov et al. [42] | total | , , , | G16 |
Panov et al. [42] | total | (q = 5, 6), (q = 6, 7), (q = 7, 8), (q = 9, 10) | G16, MCLZ, RCMD |
Dijkkamp et al. [54] | total,nl | (q = 3, 4), , | G16 |
Fritsch Lin [55] | total,nl | G16 | |
Hoekstra et al. [56] | total,nl | G16 | |
Stebbings et al. [57] | total | , | G16 |
Fite et al. [58] | total | G16 | |
Meyer et al. [43] | total | (q = 2–5), (q = 3, 4), (q = 3, 4) | G16 |
Meyer et al. [43] | total | (q = 3–6), (q = 4–9), (q = 4–15) | G16 |
Meyer et al. [43] | total | (q = 7, 8) | G16, MCLZ, RCMD |
Havener et al. [59] | total | G16 | |
Huber [60] | total | (q = 2–4), (q = 2–4, 6) | G16 |
Kim et al. [61] | total | (q = 2–7) | G16 |
Beijers et al. [62] | nl | G16 | |
Rejoub et al. [63] | total | G16 | |
Havener et al. [64] | total | G16 | |
Bruhns et al. [65] | total | G16 | |
Havener et al. [66] | total | G16 | |
Mroczkowski et al. [67] | total | G16 | |
Pieksma Havener [68] | total | G16 | |
Folkerts et al. [69] | total | G16 |
Ion | v (km s) | Ratio | Experiment | G16 | MCLZ | RCMD | Reference |
---|---|---|---|---|---|---|---|
N VII | 794 | Ly/Ly | 0.76 | 0.12 | 0.13 | 0.10 | 1 |
(Ly + Ly)/Ly | 0.62 | 0.18 | 0.20 | 0.29 | |||
O VII | 724 | Ly/Ly | 0.19 | 0.07 | 0.09 | 0.07 | |
(Ly + Ly)/Ly | 0.24 | 0.11 | 0.47 | 0.07 | |||
O VIII | 774 | Ly/Ly | 0.13 | 0.11 | 0.10 | 0.11 | |
(Ly + Ly)/Ly | 0.17 | 0.15 | 0.18 | 0.14 | |||
Ne IX | 743 | Ly/Ly | 0.04 | 0.04 | 0.12 | − | |
(Ly + Ly)/Ly | 0.05 | 0.05 | 0.18 | − | |||
Ne X | 783 | Ly/Ly | 0.12 | 0.08 | 0.08 | 0.08 | |
(Ly + Ly)/Ly | 0.11 | 0.06 | 0.08 | 0.04 | |||
O VIII | 293 | Ly/Ly | 0.169 ± 0.044 | 0.244 | 0.254 | 0.149 | 2 |
Ly/Ly | 0.032 ± 0.008 | 0.053 | 0.068 | 0.035 | |||
Ly/Ly | 0.071 ± 0.014 | 0.177 | 0.201 | 0.057 | |||
Ly/Ly | 0.0065 ± 0.003 | 0.054 | 0.0061 | 0.027 | |||
O VIII | 414 | Ly/Ly | 0.165 ± 0.030 | 0.192 | 0.202 | 0.149 | |
Ly/Ly | 0.039 ± 0.012 | 0.038 | 0.053 | 0.030 | |||
Ly/Ly | 0.103 ± 0.02 | 0.125 | 0.138 | 0.057 | |||
Ly/Ly | 0.005 ± 0.0076 | 0.031 | 0.0024 | 0.019 | |||
O VIII | 586 | Ly/Ly | 0.154 ± 0.006 | 0.115 | 0.123 | 0.132 | |
Ly/Ly | 0.035 ± 0.008 | 0.024 | 0.038 | 0.030 | |||
Ly/Ly | 0.104 ± 0.015 | 0.066 | 0.068 | 0.064 | |||
Ly/Ly | 0.0048 ± 0.0061 | 0.015 | 0.00086 | 0.014 | |||
O VIII | 1256 | Ly/Ly | 0.121 ± 0.027 | 0.122 | 0.135 | 0.108 | |
Ly/Ly | 0.022 ± 0.004 | 0.035 | 0.044 | 0.020 | |||
Ly/Ly | 0.037 ± 0.011 | 0.055 | 0.071 | 0.050 | |||
Ly/Ly | 0.0048 ± 0.0028 | 0.023 | 0.00045 | 0.0090 | |||
C VI | 477 | Ly/Ly | 0.169 ± 0.023 | 0.208 | 0.226 | 0.177 | 3 |
Ly/Ly | 0.240 ± 0.012 | 0.198 | 0.199 | 0.152 | |||
Ly/Ly | 0.022 ± 0.020 | 0.0062 | 2.8 | 0.0061 | |||
C VI | 924 | Ly/Ly | 0.157 ± 0.012 | 0.214 | 0.213 | 0.173 | |
Ly/Ly | 0.173 ± 0.023 | 0.115 | 0.132 | 0.142 | |||
Ly/Ly | 0.024 ± 0.009 | 0.014 | 2.7 | 0.0091 | |||
C VI | 1262 | Ly/Ly | 0.128 ± 0.009 | 0.222 | 0.231 | 0.157 | |
Ly/Ly | 0.113 ± 0.012 | 0.112 | 0.144 | 0.114 | |||
Ly/Ly | 0.021 ± 0.008 | 0.035 | 2.2 | 0.015 | |||
C VI | 2185 | Ly/Ly | 0.109 ± 0.019 | 0.154 | 0.182 | 0.114 | |
Ly/Ly | 0.043 ± 0.011 | 0.091 | 0.125 | 0.080 | |||
Ly/Ly | 0.011 ± 0.006 | 0.015 | 6.7 | 0.015 | |||
C VI | 3466 | Ly/Ly | 0.130 ± 0.021 | 0.141 | 0.178 | 0.108 | |
Ly/Ly | 0.024 ± 0.018 | 0.061 | 0.080 | 0.048 | |||
Ly/Ly | 0.0076 ± 0.004 | 0.007 | 5.0 | 0.012 | |||
O VII | low | He/He | 0.167 | 0.168 | 0.152 | 0.058 | 4 |
Ne IX | low | He/He | 0.162 | 0.161 | 0.133 | − | |
Ar XVII | low | He/He | 0.191 | 0.133 | − | − | |
Fe XXV | low | He/He | 0.267 | 0.156 | 0.079 | − | |
O VIII | low | Ly/Ly | 1.006 | 0.786 | 0.887 | 0.366 | |
Ne X | low | Ly/Ly | 1.207 | 0.690 | 0.865 | 0.210 | |
Mg XII | low | Ly/Ly | 0.227 ± 0.040 | 0.179 | 0.205 | − | 5 |
Mg XII | low | Ly/Ly | 0.133 ± 0.022 | 0.070 | 0.083 | − | |
Mg XII | low | Ly/Ly | 0.044 ± 0.015 | 0.038 | 0.046 | − | |
Mg XII | low | Ly/Ly | 0.095 ± 0.015 | 0.028 | 0.030 | − | |
Mg XII | low | Ly/Ly | 0.030 ± 0.018 | 0.221 | 0.120 | − | |
Mg XII | low | Ly/Ly | 0.080 ± 0.014 | 0.091 | 0.287 | − | |
S XVI | low | Ly/Ly | 0.203 ± 0.070 | 0.153 | 0.171 | − | 5 |
S XVI | low | Ly/Ly | 0.082 ± 0.016 | 0.055 | 0.064 | − | |
S XVI | low | Ly/Ly | 0.053 ± 0.011 | 0.028 | 0.033 | − | |
S XVI | low | Ly/Ly | 0.053 ± 0.008 | 0.017 | 0.020 | − | |
S XVI | low | Ly/Ly | 0.016 ± 0.005 | 0.012 | 0.014 | − | |
S XVI | low | Ly/Ly | 0.029 ± 0.008 | 0.024 | 0.014 | − | |
S XVI | low | Ly/Ly | 0.111 ± 0.019 | 0.149 | 0.101 | − | |
S XVI | low | Ly/Ly | 0.165 ± 0.024 | 0.058 | 0.165 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Shah, C.; Zhang, R. Uncertainties in Atomic Data for Modeling Astrophysical Charge Exchange Plasmas. Sensors 2022, 22, 752. https://doi.org/10.3390/s22030752
Gu L, Shah C, Zhang R. Uncertainties in Atomic Data for Modeling Astrophysical Charge Exchange Plasmas. Sensors. 2022; 22(3):752. https://doi.org/10.3390/s22030752
Chicago/Turabian StyleGu, Liyi, Chintan Shah, and Ruitian Zhang. 2022. "Uncertainties in Atomic Data for Modeling Astrophysical Charge Exchange Plasmas" Sensors 22, no. 3: 752. https://doi.org/10.3390/s22030752
APA StyleGu, L., Shah, C., & Zhang, R. (2022). Uncertainties in Atomic Data for Modeling Astrophysical Charge Exchange Plasmas. Sensors, 22(3), 752. https://doi.org/10.3390/s22030752