Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects
Abstract
:1. Introduction
2. Overview of Anomaly Detection
2.1. Noise and Outliers
2.2. Data Types
2.3. Data Pre-Processing
2.4. Missing Data and Data Imputation
3. Basic Categorization of Anomaly Detection
3.1. Supervised Anomaly Detection
3.2. Unsupervised Anomaly Detection
3.3. Semi-Supervised Anomaly Detection
4. Applications of Anomaly Detection Methods on Wearables Associated Data
5. Prospects
5.1. Handling and Transparency of Wearables Associated Data
5.2. Application of Wearables in Healthcare
5.3. Impact of Wearables on Managing Healthcare
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.-D.; Chung, W.-Y. Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sens. Actuators B Chem. 2009, 140, 390–395. [Google Scholar] [CrossRef]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. NPJ Digit. Med. 2021, 4, 45. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2018, 75, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR mHealth uHealth 2018, 6, e94. [Google Scholar] [CrossRef] [Green Version]
- Erdmier, C.; Hatcher, J.; Lee, M. Wearable device implications in the healthcare industry. J. Med. Eng. Technol. 2016, 40, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W.; Rose, S.M.S.-F.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S.; et al. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information. PLoS Biol. 2017, 15, e2001402. [Google Scholar] [CrossRef]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, M.-K.; Chen, C.-A.; Woodbridge, J.; Tu, M.K.; Kim, J.I.; Nahapetian, A.; Evangelista, L.S.; Sarrafzadeh, M. A Remote Patient Monitoring System for Congestive Heart Failure. J. Med. Syst. 2011, 35, 1165–1179. [Google Scholar] [CrossRef] [Green Version]
- Youm, S.; Lee, G.; Park, S.; Zhu, W. Development of remote healthcare system for measuring and promoting healthy lifestyle. Expert Syst. Appl. 2011, 38, 2828–2834. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricoli, A.; Nasiri, N.; De, S. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv. Funct. Mater. 2017, 27, 1605271. [Google Scholar] [CrossRef]
- Dargazany, A.R.; Stegagno, P.; Mankodiya, K. WearableDL: Wearable internet-of-things and deep learning for big data analytics—Concept, literature, and future. Mob. Inf. Syst. 2018, 2018, 8125126. [Google Scholar] [CrossRef]
- Ringeval, M.; Wagner, G.; Denford, J.; Paré, G.; Kitsiou, S. Fitbit-Based Interventions for Healthy Lifestyle Outcomes: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e23954. [Google Scholar] [CrossRef] [PubMed]
- Patcha, A.; Park, J.-M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput. Netw. 2007, 51, 3448–3470. [Google Scholar] [CrossRef]
- Zamini, M.; Hasheminejad, S.M.H. A comprehensive survey of anomaly detection in banking, wireless sensor networks, social networks, and healthcare. Intell. Decis. Technol. 2019, 13, 229–270. [Google Scholar] [CrossRef]
- Salamon, J.; Mouček, R. Heart rate and sentiment experimental data with common timeline. Data Brief 2017, 15, 851–861. [Google Scholar] [CrossRef]
- Dias, D.; Paulo Silva Cunha, J. Wearable health devices—Vital sign monitoring, systems and technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agliari, E.; Barra, A.; Barra, O.A.; Fachechi, A.; Vento, L.F.; Moretti, L. Detecting cardiac pathologies via machine learning on heart-rate variability time series and related markers. Sci. Rep. 2020, 10, 8845. [Google Scholar] [CrossRef] [PubMed]
- Melillo, P.; Izzo, R.; Orrico, A.; Scala, P.; Attanasio, M.; Mirra, M.; DE Luca, N.; Pecchia, L. Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis. PLoS ONE 2015, 10, e0118504. [Google Scholar] [CrossRef]
- Fox, K.; Borer, J.S.; Camm, A.J.; Danchin, N.; Ferrari, R.; Sendon, J.L.L.; Steg, P.G.; Tardif, J.-C.; Tavazzi, L.; Tendera, M. Resting Heart Rate in Cardiovascular Disease. J. Am. Coll. Cardiol. 2007, 50, 823–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, W.; Li, F. Association between resting heart rate and coronary artery disease, stroke, sudden death and noncardiovascular diseases: A meta-analysis. Can. Med. Assoc. J. 2016, 188, E384–E392. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C.C. An Introduction to Outlier Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–34. [Google Scholar]
- Salgado, C.M.; Azevedo, C.; Proença, H.; Vieira, S.M. Noise versus outliers. Second Anal. Electron. Health Rec. 2016, 163–183. [Google Scholar] [CrossRef] [Green Version]
- Torr, P.H.; Murray, D.W. Outlier detection and motion segmentation. In Sensor Fusion VI; International Society for Optics and Photonics: Boston, MA, USA, 1993; pp. 432–443. [Google Scholar]
- Marsland, S. On-Line Novelty Detection Through Self-Organisation, with Application to Inspection Robotics; The University of Manchester: Manchester, UK, 2001. [Google Scholar]
- Penny, K.I. Appropriate Critical Values When Testing for a Single Multivariate Outlier by Using the Mahalanobis Distance. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1996, 45, 73. [Google Scholar] [CrossRef]
- Cook, R.D.; Weisberg, S. Residuals and Influence in Regression; Chapman and Hall: New York, NY, USA, 1982. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Shiffler, R.E. Maximum Z scores and outliers. Am. Stat. 1988, 42, 79–80. [Google Scholar]
- Ramaswamy, S.; Rastogi, R.; Shim, K. Efficient algorithms for mining outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; pp. 427–438. [Google Scholar]
- Song, X.; Wu, M.; Jermaine, C.; Ranka, S. Conditional Anomaly Detection. IEEE Trans. Knowl. Data Eng. 2007, 19, 631–645. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Banaee, H.; Ahmed, M.U.; Loutfi, A. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [Green Version]
- Melstrom, L.G.; Rodin, A.S.; Rossi, L.A.; Fu, P., Jr.; Fong, Y.; Sun, V. Patient generated health data and electronic health record integration in oncologic surgery: A call for artificial intelligence and machine learning. J. Surg. Oncol. 2021, 123, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Szydło, T.; Konieczny, M. Mobile and wearable devices in an open and universal system for remote patient monitoring. Microprocess. Microsyst. 2016, 46, 44–54. [Google Scholar] [CrossRef]
- Mitlohner, J.; Neumaier, S.; Umbrich, J.; Polleres, A. Characteristics of Open Data CSV Files. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 72–79. [Google Scholar]
- Lin, S.; Wu, X.; Martinez, G.; Chawla, N.V. Filling Missing Values on Wearable-Sensory Time Series Data. In Proceedings of the 2020 SIAM International Conference on Data Mining; SIAM: Philadelphia, PA, USA, 2020; pp. 46–54. [Google Scholar]
- Mack, C.; Su, Z.; Westreich, D. Managing Missing Data in Patient Registries: Addendum to Registries for Evaluating Patient Outcomes: A User’s Guide; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2018.
- Li, P.; Stuart, E.A.; Allison, D.B. Multiple imputation: A flexible tool for handling missing data. JAMA 2015, 314, 1966–1967. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.L.; Althoff, T.; Sosic, R.; Kuhar, P.; Bostjancic, B.; King, A.C.; Leskovec, J.; Delp, S.L. Best practices for analyzing large-scale health data from wearables and smartphone apps. NPJ Digit. Med. 2019, 2, 45. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.D.; Lewis, R.J. Missing data: How to best account for what is not known. JAMA 2015, 314, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Allison, P. Handling Missing Data by Maximum Likelihood; Keynote presentation at the SAS Global Forum: Orlando, FL, USA, 2012. [Google Scholar]
- Joenssen, D.W.; Bankhofer, U. Hot Deck Methods for Imputing Missing Data. In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–75. [Google Scholar]
- Manly, C.A.; Wells, R. Reporting the Use of Multiple Imputation for Missing Data in Higher Education Research. Res. High. Educ. 2014, 56, 397–409. [Google Scholar] [CrossRef]
- Hegde, H.; Shimpi, N.; Panny, A.; Glurich, I.; Christie, P.; Acharya, A. MICE vs PPCA: Missing data imputation in healthcare. Inf. Med. Unlocked 2019, 17, 100275. [Google Scholar] [CrossRef]
- Honaker, J.; King, G. What to Do about Missing Values in Time-Series Cross-Section Data. Am. J. Polit. Sci. 2010, 54, 561–581. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Gao, J.; Aggarwal, C.; Han, J. Outlier Detection for Temporal Data. Synth. Lect. Data Min. Knowl. Discov. 2014, 5, 129. [Google Scholar] [CrossRef]
- Feng, T.; Narayanan, S. Imputing Missing Data in Large-Scale Multivariate Biomedical Wearable Recordings Using Bidirectional Recurrent Neural Networks with Temporal Activation Regularization. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 2529–2534. [Google Scholar]
- Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Comput. Surv. 2021, 54, 1–33. [Google Scholar] [CrossRef]
- Sagheer, A.; Kotb, M. Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems. Sci. Rep. 2019, 9, 19038. [Google Scholar] [CrossRef] [Green Version]
- Goernitz, N.; Kloft, M.; Rieck, K.; Brefeld, U. Toward Supervised Anomaly Detection. J. Artif. Intell. Res. 2013, 46, 235–262. [Google Scholar] [CrossRef]
- Cho, S.; Ensari, I.; Weng, C.; Kahn, M.G.; Natarajan, K. Factors Affecting the Quality of Person-Generated Wearable Device Data and Associated Challenges: Rapid Systematic Review. JMIR mHealth uHealth 2021, 9, e20738. [Google Scholar] [CrossRef]
- Paulheim, H.; Meusel, R. A decomposition of the outlier detection problem into a set of supervised learning problems. Mach. Learn. 2015, 100, 509–531. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Xu, L.; Liu, P. Fall detection by wearable sensor and one-class SVM algorithm. In Intelligent Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2006; pp. 858–863. [Google Scholar]
- Indikawati, F.I.; Winiarti, S. Stress Detection from Multimodal Wearable Sensor Data; IOP Publishing: Bristol, UK, 2020; p. 012028. [Google Scholar]
- Zhu, C.; Sheng, W.; Liu, M. Wearable Sensor-Based Behavioral Anomaly Detection in Smart Assisted Living Systems. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1225–1234. [Google Scholar] [CrossRef]
- Eskin, E.; Arnold, A.; Prerau, M.; Portnoy, L.; Stolfo, S. A Geometric Framework for Unsupervised Anomaly Detection. In Applications of Data Mining in Computer Security; Springer: Berlin/Heidelberg, Germany, 2002; pp. 77–101. [Google Scholar]
- Gosavi, J.S. Wadne vs. Unsupervised distance-based outlier detection using nearest neighbours algorithm on distributed approach: Survey. Int. J. Innov. Res. Comput. Commun. Eng. 2014, 2, 7510–7514. [Google Scholar] [CrossRef]
- Amer, M.; Goldstein, M. Nearest-neighbor and clustering based anomaly detection algorithms for rapidminer. In Proceedings of the 3rd RapidMiner Community Meeting and Conference (RCOMM 2012), Budapest, Hungary, 28–31 August 2012; pp. 1–12. [Google Scholar]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. Unsupervised Clustering Approach for Network Anomaly Detection. In Unsurprised Clustering Approach for Network Anomaly Detection; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–145. [Google Scholar]
- Zhang, C.; Song, D.; Chen, Y.; Feng, X.; Lumezanu, C.; Cheng, W.; Ni, J.; Zong, B.; Chen, H.; Chawla, N.V. A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, HI, USA, 27 January–1 February 2019; pp. 1409–1416. [Google Scholar]
- Veeravalli, B.; Deepu, C.J.; Ngo, D. Real-time, personalized anomaly detection in streaming data for wearable healthcare devices. In Handbook of Large-Scale Distributed Computing in Smart Healthcare; Springer: Berlin/Heidelberg, Germany, 2017; pp. 403–426. [Google Scholar]
- Li, L.; Hansman, R.J.; Palacios, R.; Welsch, R. Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring. Transp. Res. Part C Emerg. Technol. 2016, 64, 45–57. [Google Scholar] [CrossRef]
- Sudhakaran, S.; Lanz, O. Convolutional long short-term memory networks for recognizing first person interactions. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2339–2346. [Google Scholar]
- Choo, S.; Seo, W.; Jeong, D.-J.; Cho, N.I. Multi-scale recurrent encoder-decoder network for dense temporal classification. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; IEEE: Beijing, China, 2018; pp. 103–108. [Google Scholar]
- Tayefi, M.; Ngo, P.; Chomutare, T.; Dalianis, H.; Salvi, E.; Budrionis, A.; Godtliebsen, F. Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdiscip. Rev. Comput. Stat. 2021, 13, e1549. [Google Scholar] [CrossRef]
- Foorthuis, R. On the nature and types of anomalies: A review of deviations in data. Int. J. Data Sci. Anal. 2021, 12, 297–331. [Google Scholar] [CrossRef] [PubMed]
- Filzmoser, P.; Maronna, R.; Werner, M. Outlier identification in high dimensions. Comput. Stat. Data Anal. 2008, 52, 1694–1711. [Google Scholar] [CrossRef]
- Song, H.; Jiang, Z.; Men, A.; Yang, B. A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data. Comput. Intell. Neurosci. 2017, 2017, 8501683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schölkopf, B.; Platt, J.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the Support of a High-Dimensional Distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef]
- Ruff, L.; Vandermeulen, R.A.; Görnitz, N.; Binder, A.; Müller, E.; Müller, K.R.; Kloft, M. Deep semi-supervised anomaly detection. arXiv 2019, arXiv:190602694. [Google Scholar]
- Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data. PLoS ONE 2016, 11, e0152173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. CSUR 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, R.K.; Kumar, R.; Buyya, R. Gaussian Distribution-Based Machine Learning Scheme for Anomaly Detection in Healthcare Sensor Cloud. Int. J. Cloud Appl. Comput. 2021, 11, 52–72. [Google Scholar] [CrossRef]
- Bogu, G.K.; Snyder, M.P. Deep learning-based detection of COVID-19 using wearables data. medRxiv 2021. [Google Scholar] [CrossRef]
- Zhu, G.; Li, J.; Meng, Z.; Yu, Y.; Li, Y.; Tang, X.; Dong, Y.; Sun, G.; Zhou, R.; Wang, H.; et al. Learning from Large-Scale Wearable Device Data for Predicting the Epidemic Trend of COVID-19. Discret. Dyn. Nat. Soc. 2020, 2020, 6152041. [Google Scholar] [CrossRef]
- Wang, L.; Nielsen, K.; Goldberg, J.; Brown, J.R.; Rumsfeld, J.S.; Steinberg, B.A.; Zhang, Y.; Matheny, M.E.; Shah, R.U. Association of Wearable Device Use with Pulse Rate and Health Care Use in Adults with Atrial Fibrillation. JAMA Netw. Open 2021, 4, e215821. [Google Scholar] [CrossRef]
- Lown, M.; Brown, M.; Brown, C.; Yue, A.M.; Shah, B.N.; Corbett, S.J.; Lewith, G.; Stuart, B.; Moore, M.; Little, P. Machine learning detection of Atrial Fibrillation using wearable technology. PLoS ONE 2020, 15, e0227401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemati, S.; Ghassemi, M.M.; Ambai, V.; Isakadze, N.; Levantsevych, O.; Shah, A.; Clifford, G.D. Monitoring and detecting atrial fibrillation using wearable technology. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 17–20 October 2016; pp. 3394–3397. [Google Scholar]
- Liu, J.; Zhao, Y.; Lai, B.; Wang, H.; Tsui, K.L. Wearable Device Heart Rate and Activity Data in an Unsupervised Approach to Personalized Sleep Monitoring: Algorithm Validation. JMIR mHealth uHealth 2020, 8, e18370. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.-W.; Yang, C.-C. Accuracy of Optical Heart Rate Sensing Technology in Wearable Fitness Trackers for Young and Older Adults: Validation and Comparison Study. JMIR mHealth uHealth 2020, 8, e14707. [Google Scholar] [CrossRef] [PubMed]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A.; et al. Continuous wearable monitoring analytics predict heart failure hospitalization: The LINK-HF multicenter study. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Jiang, J.; Su, R.; Gao, M.; Zhu, S.; Zhou, J.; Huo, Y. A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation. Hear. Rhythm. 2020, 17, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, S.; Caldato, C.; Bazzan, E.; Greenwood, D.C.; Pensabene, V.; Actis, P. Assessment of the Fitbit Charge 2 for monitoring heart rate. PLoS ONE 2018, 13, e0192691. [Google Scholar] [CrossRef] [Green Version]
- Perez-Pozuelo, I.; Spathis, D.; Clifton, E.A.; Mascolo, C. Wearables, smartphones, and artificial intelligence for digital phenotyping and health. In Digital Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–54. [Google Scholar]
- Al-Turjman, F.; Baali, I. Machine learning for wearable IoT-based applications: A survey. Trans. Emerg. Telecommun. Technol. 2019, e3635. [Google Scholar] [CrossRef]
- Angelides, M.C.; Wilson, L.A.C.; Echeverría, P.L.B. Wearable data analysis, visualisation and recommendations on the go using android middleware. Multimed. Tools Appl. 2018, 77, 26397–26448. [Google Scholar] [CrossRef] [Green Version]
- Beach, C. A Flexible Temperature Sensing Insole for Diabetic Foot Ulcer Monitoring with an Investigation into the Self Powering of Wearables via Energy Harvesting; The University of Manchester: Manchester, UK, 2020. [Google Scholar]
- Mahabala, C.; Kamath, P.; Bhaskaran, U.; Pai, N.D.; Pai, A.U. Antihypertensive therapy: Nocturnal dippers and nondippers. Do we treat them differently? Vasc. Health Risk Manag. 2013, 9, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Semaan, S.; Dewland, T.A.; Tison, G.; Nah, G.; Vittinghoff, E.; Pletcher, M.J.; Olgin, J.E.; Marcus, G.M. Physical activity and atrial fibrillation: Data from wearable fitness trackers. Hear. Rhythm. 2020, 17, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Siirtola, P.; Koskimäki, H.; Mönttinen, H.; Röning, J. Using Sleep Time Data from Wearable Sensors for Early Detection of Migraine Attacks. Sensors 2018, 18, 1374. [Google Scholar] [CrossRef] [Green Version]
- Sannino, G.; De Falco, I.; De Pietro, G. Non-Invasive Risk Stratification of Hypertension: A Systematic Comparison of Machine Learning Algorithms. J. Sens. Actuator Netw. 2020, 9, 34. [Google Scholar] [CrossRef]
- Hasan, R.; Hanna, M.; Zhang, S.; Malone, K.; Tong, E.; Salas, N.; Sarode, R.; Journeycake, J.; Zia, A. Physical activity in children at risk of postthrombotic sequelae: A pilot randomized controlled trial. Blood Adv. 2020, 4, 3767–3775. [Google Scholar] [CrossRef]
- Wei, J. How Wearables Intersect with the Cloud and the Internet of Things: Considerations for the developers of wearables. IEEE Consum. Electron. Mag. 2014, 3, 53–56. [Google Scholar] [CrossRef]
- Hill, E.M.; Petrou, S.; de Lusignan, S.; Yonova, I.; Keeling, M.J. Seasonal influenza: Modelling approaches to capture immunity propagation. PLoS Comput. Biol. 2019, 15, e1007096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quer, G.; Gouda, P.; Galarnyk, M.; Topol, E.J.; Steinhubl, S.R. Inter-and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLoS ONE 2020, 15, e0227709. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Rogers, J.A.; Xu, S. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Sci. Adv. 2020, 6, eabd4794. [Google Scholar] [CrossRef] [PubMed]
Methods | Definition | Accuracy | References |
---|---|---|---|
Mean value imputation (MVI) | The values are filled using calculating the mean for a missing value | Biased | [42] |
Maximum Likelihood (ML) | A likelihood function is evaluated and then sum or integrate over the missing data | Unbiased parameter estimation | [43] |
Hot Deck Imputation | A data matrix for all instances created is chosen as a source for missing values | Replication of values may cause bias | [44] |
Multiple Imputation (MI) | Starts by introducing random variation and generates several datasets with slightly different imputed values. Statistical analysis on each to find the optimal one | Comparable to ML | [45] |
Multivariate Imputation by Chained Equations (MICE) | The method first identifies an imputation model for each column followed by random draws from the observable data | Comparable to ML | [46] |
Expectation–Maximization with Bootstrapping (EMB) | Initially the likelihood function is evaluated using model parameters. Next, with the updated parameters, the likelihood function is maximized, and the parameters are updated to return a new distribution | Comparable to ML | [47] |
Disease under Study | Wearables Used | Method Applied | Major Finding | References |
---|---|---|---|---|
COVID-19 | Huami wearable devices | Anomaly detection algorithm, neural network prediction modelling methodology | Prediction model with potential to alert COVID-19 outbreak in advance as a part of health surveillance system | [78] |
Atrial Fibrillation (AFib) | Not mentioned | Not mentioned | Follow-up health care amongst those using wearables was higher indicating better disease management | [79] |
Atrial Fibrillation (AFib) | Samsung Simband | Noise-resistant machine learning approach | The screening algorithm can enable large scale detection of undiagnosed AFib from noisy Photoplethysmogram (PPG) wearable sensor | [81] |
Sleep/wake identification | Fitbit Alta; Fitbit Inc | Hidden Markov models | Accurate measurement of sleep/wake cycle and an effective personalized model | [82] |
Monitor heart rate in real time during moderate exercise | Xiaomi Mi Band 2 and Garmin Vivosmart HR+ | Not mentioned | Estimating accurate heart rate signals under physically strenuous activity | [83] |
Prediction of Heart Failure Exacerbation | wearable sensor (Vital Connect, San Jose CA) | Machine learning analytics algorithm | Multivariate data from wearables accurately predicts the need for rehospitalization of patients with a heart failure risk | [84] |
Atrial fibrillation (AF) | Amazfit Health Band 1S | Artificial intelligence (AI) algorithm | PPG sensor derived data along with AI can be an efficient way to detect AF | [85] |
Distance walked or run, calorie consumption, quality of sleep and heart rate | Fitbit Charge 2 (Thought Technology LTD, Toronto, CANADA) | HR-derived algorithms | Accurate heart rate monitoring for fitness tracking using wearables compared to electrocardiograph has several significant differences, which needs to be studied | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunny, J.S.; Patro, C.P.K.; Karnani, K.; Pingle, S.C.; Lin, F.; Anekoji, M.; Jones, L.D.; Kesari, S.; Ashili, S. Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects. Sensors 2022, 22, 756. https://doi.org/10.3390/s22030756
Sunny JS, Patro CPK, Karnani K, Pingle SC, Lin F, Anekoji M, Jones LD, Kesari S, Ashili S. Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects. Sensors. 2022; 22(3):756. https://doi.org/10.3390/s22030756
Chicago/Turabian StyleSunny, Jithin S., C. Pawan K. Patro, Khushi Karnani, Sandeep C. Pingle, Feng Lin, Misa Anekoji, Lawrence D. Jones, Santosh Kesari, and Shashaanka Ashili. 2022. "Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects" Sensors 22, no. 3: 756. https://doi.org/10.3390/s22030756
APA StyleSunny, J. S., Patro, C. P. K., Karnani, K., Pingle, S. C., Lin, F., Anekoji, M., Jones, L. D., Kesari, S., & Ashili, S. (2022). Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects. Sensors, 22(3), 756. https://doi.org/10.3390/s22030756