Privacy-Preserving Human Action Recognition with a Many-Objective Evolutionary Algorithm
Abstract
:1. Introduction
2. Motivation
3. Materials and Methods
3.1. Dataset and Data Pre-Processing
3.2. The Inductor Classifier: Random Forest
3.3. The Many-Objective Evolutionary Algorithm: NSGA-III
3.4. Experimental Setup
4. Results
4.1. Baseline: Initial Individual
4.2. Optimised Results: The Best Individual after NSGA-III
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashidi, P.; Mihailidis, A. A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE J. Biomed. Health Inform. 2013, 17, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, D.; Cesarini, D.; Sernani, P.; Marinoni, M.; Dragoni, A.F.; Sturm, A. Exploring the ambient assisted living domain: A systematic review. J. Ambient Intell. Humaniz. Comput. 2017, 8, 239–257. [Google Scholar] [CrossRef]
- Selke, S. Lifelogging: Digital Self-Tracking and Lifelogging—Between Disruptive Technology and Cultural Transformation; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Munstermann, M.; Stevens, T.; Luther, W. A Novel Human Autonomy Assessment System. Sensors 2012, 12, 7828–7854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barshan, B.; Yüksek, M.C. Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. Comput. J. 2014, 57, 1649–1667. [Google Scholar] [CrossRef]
- Jalal, A.; Quaid, M.A.K.; Tahir, S.B.u.d.; Kim, K. A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems. Sensors 2020, 20, 6670. [Google Scholar] [CrossRef] [PubMed]
- Empatica Inc. E4 WristBand from Empatica User’s Manual; Empatica Inc.: Milan, Italy, 2018. [Google Scholar]
- Gomaa, W.; Elbasiony, R.; Ashry, S. ADL Classification Based on Autocorrelation Function of Inertial Signals. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 833–837. [Google Scholar] [CrossRef]
- Lu, J.; Tong, K.y. Robust Single Accelerometer-based Activity Recognition Using Modified Recurrence Plot. IEEE Sens. J. 2019, 19, 6317–6324. [Google Scholar] [CrossRef]
- Chen, L.; Li, R.; Zhang, H.; Tian, L.; Chen, N. Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch. Measurement 2019, 140, 215–226. [Google Scholar] [CrossRef]
- Fioretti, S.; Olivastrelli, M.; Poli, A.; Spinsante, S.; Strazza, A. ADLs Detection with a Wrist-Worn Accelerometer in Uncontrolled Conditions. In Wearables in Healthcare; Perego, P., TaheriNejad, N., Caon, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 197–208. [Google Scholar]
- Bruno, B.; Mastrogiovanni, F.; Sgorbissa, A.; Vernazza, T.; Zaccaria, R. Analysis of human behavior recognition algorithms based on acceleration data. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 1602–1607. [Google Scholar]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM Sigkdd Explor. Newsl. 2011, 12, 74–82. [Google Scholar] [CrossRef]
- Jalal, A.; Quaid, M.A.K.; Sidduqi, M.A. A Triaxial Acceleration-based Human Motion Detection for Ambient Smart Home System. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 353–358. [Google Scholar] [CrossRef]
- Jain, A.; Kanhangad, V. Gender classification in smartphones using gait information. Expert Syst. Appl. 2018, 93, 257–266. [Google Scholar] [CrossRef]
- Van hamme, T.; Garofalo, G.; Argones Rúa, E.; Preuveneers, D.; Joosen, W. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces. Sensors 2019, 19, 2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, A.; Strazza, A.; Cecchi, S.; Spinsante, S. Identification Issues Associated with the Use of Wearable Accelerometers in Lifelogging. In Human Aspects of IT for the Aged Population. Technologies, Design and User Experience; Gao, Q., Zhou, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 338–351. [Google Scholar]
- Boutet, A.; Frindel, C.; Gambs, S.; Jourdan, T.; Ngueveu, R.C. DySan: Dynamically Sanitizing Motion Sensor Data Against Sensitive Inferences through Adversarial Networks. In Proceedings of the Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security (ASIA CCS ’21), Hong Kong, China, 7–11 June 2021; pp. 672–686. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- John, G.H.; Kohavi, R.; Pfleger, K. Irrelevant Features and the Subset Selection Problem. In Machine Learning Proceedings 1994; Cohen, W.W., Hirsh, H., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1994; pp. 121–129. [Google Scholar]
- Poli, A.; Muñoz-Anton, A.; Spinsante, S.; Florez-Revuelta, F. Balancing activity recognition and privacy preservation with multi-objective evolutionary algorithm. In Proceedings of the 7th EAI International Conference on Smart Objects and Technologies for Social Good, Virtual Event, 15–17 September 2021; pp. 1–15. [Google Scholar]
- Climent-Pérez, P.; Muñoz-Antón, Á.M.; Poli, A.; Spinsante, S.; Florez-Revuelta, F. PAAL ADL Accelerometry Dataset v2.0. 2021. Available online: https://zenodo.org/record/5785955#.YejN9vgRWUl (accessed on 30 December 2021).
- Climent-Pérez, P.; Muñoz-Anton, A.M.; Poli, A.; Spinsante, S.; Florez-Revuelta, F. Dataset of acceleration signals recorded while performing activities of daily living. Data Brief 2022, in press. [Google Scholar]
- Li, J.H.; Tian, L.; Wang, H.; An, Y.; Wang, K.; Yu, L. Segmentation and Recognition of Basic and Transitional Activities for Continuous Physical Human Activity. IEEE Access 2019, 7, 42565–42576. [Google Scholar] [CrossRef]
- Climent-Pérez, P.; Muñoz-Anton, A.M.; Poli, A.; Spinsante, S.; Florez-Revuelta, F. Human Action Recognition from Accelerometer Data—ARFF Filtered Data Generator Script. 2022. Available online: https://zenodo.org/record/5849344#.YejP0vgRWUl (accessed on 30 December 2021).
- Gomaa, W. Comparative Analysis of Different Approaches to Human Activity Recognition Based on Accelerometer Signals. In Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Hassanien, A.E., Darwish, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 303–322. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Blank, J.; Deb, K. pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
Domain | Features | Computation |
---|---|---|
Time | Mean, median, | X, Y, Z; SMV |
Maximum, minimum, and range | X, Y, Z; SMV | |
Correlation between axes | XY, YZ, ZX | |
Signal magnitude area (SMA) | SMV | |
Coefficient of variation (CV) | X, Y, Z; SMV | |
Median absolute deviation (MAD) | X, Y, Z; SMV | |
Skewness, Kurtosis, Autocorrelation | SMV | |
Percentiles (20; 50; 80; 90), interquartile range | SMV | |
Number of peaks, peak-to-peak amplitude | SMV | |
Energy, Root mean square (RMS) | SMV | |
Frequency | Spectral entropy, energy, and centroid | SMV |
Mean, | X, Y, Z; SMV | |
Percentiles (25; 50; 75) | SMV |
Classifier | Initial (I) Acc. | Best (B) Acc. | Diff. (B-I) | Random | Diff. (B-R) |
---|---|---|---|---|---|
Gender | 88.9 | 58.3 | ⇓ −30.6 | 50.0 | 8.3 |
Age | 83.5 | 39.2 | ⇓ −44.3 | 14.3 | 24.9 |
HAR | 87.2 | 67.7 | ↓ −19.5 | 4.2 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Climent-Pérez, P.; Florez-Revuelta, F. Privacy-Preserving Human Action Recognition with a Many-Objective Evolutionary Algorithm. Sensors 2022, 22, 764. https://doi.org/10.3390/s22030764
Climent-Pérez P, Florez-Revuelta F. Privacy-Preserving Human Action Recognition with a Many-Objective Evolutionary Algorithm. Sensors. 2022; 22(3):764. https://doi.org/10.3390/s22030764
Chicago/Turabian StyleCliment-Pérez, Pau, and Francisco Florez-Revuelta. 2022. "Privacy-Preserving Human Action Recognition with a Many-Objective Evolutionary Algorithm" Sensors 22, no. 3: 764. https://doi.org/10.3390/s22030764
APA StyleCliment-Pérez, P., & Florez-Revuelta, F. (2022). Privacy-Preserving Human Action Recognition with a Many-Objective Evolutionary Algorithm. Sensors, 22(3), 764. https://doi.org/10.3390/s22030764