Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring
Abstract
:1. Introduction
2. State of the Art
2.1. Micro Aerial Vehicles
2.2. Pollution Tracking Using Unmanned Aerial Vehicles
3. Architecture
3.1. Sensing Unit
3.2. Multi-Copter
3.3. Measurement Methodology
4. Evaluation and Results
4.1. Air Quality Reference Indices
4.2. University Area
4.3. City Peripheral Residential Zone
4.4. City Mall Underground Parking
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, R.; Spengler, J. Particles in Our Air: Concentrations and Health Effects; Harvard University Press: Boston, MA, USA, 1996. [Google Scholar]
- Göpel, W. Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses 1 Presented in part. Sens. Actuators B Chem. 1998, 52, 125–142. [Google Scholar] [CrossRef]
- Tomchenko, A.; Harmer, G.; Marquis, B.; Allen, J. Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens. Actuators B Chem. 2003, 93, 126–134. [Google Scholar] [CrossRef]
- IQAir. World’s Most Polluted Cities 2020. 2021. Available online: https://www.iqair.com/world-most-polluted-cities (accessed on 17 December 2021).
- IQAir. Air Quality in Hotan, China. 2021. Available online: https://www.iqair.com/china/xinjiang/hotan (accessed on 17 December 2021).
- Nieminen, P.; Panychev, D.; Lyalyushkin, S.; Komarov, G.; Nikanov, A.; Borisenko, M.; Kinnula, V.; Toljamo, T. Environmental exposure as an independent risk factor of chronic bronchitis in northwest Russia. Int. J. Circumpolar Health 2013, 72, 19742. [Google Scholar] [CrossRef] [PubMed]
- Andruchow, J.; Soskolne, C.; Racioppi, F.; Senthilselvan, A.; Makhmudov, E.; Asadov, A. Cancer Incidence and Mortality in the Industrial City of Sumgayit, Azerbaijan. Int. J. Occup. Environ. Health 2006, 12, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.S.; Cavalli, L.; Fabrizi, E.; Guastella, G.; Lippo, E.; Parisi, M.L.; Pontarollo, N.; Rizzati, M.; Varacca, A.; Vergalli, S. The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy. Nat. Public Health Emerg. Collect. 2020, 76, 611–634. [Google Scholar]
- Paital, B.; Agrawal, P.K. Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: A review. Environ. Chem. Lett. 2020, 19, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Marquès, M.; Domingo, J.L. Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences. Environ. Res. 2021, 203, 1–18. [Google Scholar] [CrossRef]
- Mustapić, M.; Domitrović, A.; Radišić, T. Monitoring Traffic Air Pollution Using Unmanned Aerial Systems. In Transformation of Transportation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 157–172. [Google Scholar]
- Fine, G.; Cavanagh, L.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Bouabdallah, S.; Murrieri, P.; Siegwart, R. Design and Control of an Indoor Micro Quadrotor. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 4393–4398. [Google Scholar] [CrossRef] [Green Version]
- Villbrandt, J. The Quadrotor’s Coming of Age. Available online: https://illumin.usc.edu/the-quadrotors-coming-of-age/ (accessed on 17 December 2021).
- Hoffmann, G.; Rajnarayan, D.; Waslander, S.; Dostal, D.; Jang, J.; Tomlin, C. The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In Proceedings of the Digital Avionics Systems Conference (DASC 2004), Salt Lake City, UT, USA, 24–28 October 2004. [Google Scholar] [CrossRef]
- Hoffmann, G.; Huang, H.; Waslander, S.; Tomlin, C. Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC, USA, 20–23 August 2007. [Google Scholar] [CrossRef] [Green Version]
- Leighton, J. System Design of an Unmanned Aerial Vehicle (UAV) for Marine Environmental Sensing. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Watai, T.; Machida, T.; Ishizaki, N.; Inoue, G. A Lightweight Observation System for Atmospheric Carbon Dioxide Concentration Using a Small Unmanned Aerial Vehicle. J. Atmos. Ocean. Technol. 2006, 23, 700–710. [Google Scholar] [CrossRef]
- Gonzalez, L.; Gerardo-Castro, M.P.; Tamagnone, F. Multidisciplinary design and flight testing of a remote gas/particle airborne sensor system. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences 2012, ICAS 2012, Brisbane, Australia, 23–28 September 2012; Volume 5. [Google Scholar]
- McGonigle, A.; Aiuppa, A.; Giudice, G.; Tamburello, G.; Hodson, A.J.; Gurrieri, S. Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys. Res. Lett. 2008, 35, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Pochwała, S.; Gardecki, A.; Lewandowski, P.; Somogyi, V.; Anweiler, S. Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland. Sensors 2020, 20, 3582. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, C.; Ma, N.; Chen, Q.; Li, Y.; Ye, J.; Martin, S.T.; Li, Y.J. Vertical profiling of fine particulate matter and black carbon by using unmanned aerial vehicle in Macau, China. Sci. Total Environ. 2020, 709, 136109. [Google Scholar] [CrossRef] [PubMed]
- Rohi, G.; Ejofodomi, O.; Ofualagba, G. Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon 2020, 6, e03252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Q.; Jia, C. A Consumer UAV-based Air Quality Monitoring System for Smart Cities. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lambey, V.; Prasad, A. A review on air quality measurement using an unmanned aerial vehicle. Water Air Soil Pollut. 2021, 232, 1–32. [Google Scholar] [CrossRef]
- Metal Oxide Semiconductor (MOS) Sensors. Available online: http://www.senlink.co.kr/tpl/Metal%20Oxide%20Semiconductor%20(MOS)%20Sensors.pdf (accessed on 17 December 2021).
- AppliedSensor iAQ-Core Indoor Air Quality Module. Available online: https://www.es.co.th/Schemetic/PDF/IAQ-CORE.PDF (accessed on 17 December 2021).
- Nitrogen Oxide Sensor Features—Applied Sensor. Available online: https://www.yumpu.com/en/document/view/1922536/nitrogen-oxide-sensor-features-appliedsensor (accessed on 17 December 2021).
- ATmega2560 Datasheet. 2014. Available online: http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf (accessed on 17 December 2021).
- XBee ZigBee. Available online: https://datasheet.octopart.com/XB24-Z7SIT-004-Digi-International-datasheet-8368788.pdf (accessed on 17 December 2021).
- Limitations of LoRaWAN. Available online: https://www.thethingsnetwork.org/docs/lorawan/limitations/ (accessed on 17 December 2021).
- Li-Polymer Battery Packs 063450 1000mAh Datasheet. Available online: https://www.sparkfun.com/datasheets/Batteries/UnionBattery-1000mAh.pdf (accessed on 17 December 2021).
- Goldstein, M. Carbon Monoxide Poisoning. J. Emerg. Nurs. 2009, 34, 538–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struttmann, T.; Scheerer, A.; Prince, T.S.; Goldstein, L.A. Unintentional Carbon Monoxide Poisoning from an Unlikely Source. J. Am. Board Fam. Med. 1998, 11, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Lipman, G. Carbon Monoxide Toxicity at High Altitude. Wilderness Environ. Med. 2006, 17, 144–145. [Google Scholar] [CrossRef]
- European Environment Comission. Air Quality in Europe—2014 Report. 2014. Available online: http://www.eea.europa.eu/publications/air-quality-in-europe-2014/download (accessed on 17 December 2021).
- Carbon Monoxide. Available online: https://www.calitateaer.ro/public/assessment-page/pollutants-page/monoxid-carbon-page/?__locale=en (accessed on 17 December 2021).
- Nitrogen Dioxide. Available online: https://www.calitateaer.ro/public/assessment-page/pollutants-page/oxid-azot-page/?__locale=en (accessed on 17 December 2021).
- Romanian Ministry of Environmental Protection. Air Quality Indices. 2011. Available online: https://www.calitateaer.ro/ (accessed on 17 December 2021).
- Kanchan, K.; Gorai, A.; Goyal, P. A Review on Air Quality Indexing System. Asian J. Atmos. Environ. 2015, 9, 101–113. [Google Scholar] [CrossRef] [Green Version]
Level | Concentration () | Concentration (ppm) |
---|---|---|
Excellent | 0–2.(9) | 0–2.61(9) |
Very Good | 3–4.(9) | 2.62–4.366(9) |
Good | 5–6.(9) | 4.367–6.113(9) |
Medium | 7–9.(9) | 6.114–8.733(9) |
Bad | 10–14.(9) | 8.734–13.0(9) |
Very Bad | >15 | >13.1 |
Level | Concentration () | Concentration (ppb) |
---|---|---|
Excellent | 0–49.(9) | 0–25.24(9) |
Very Good | 50–99.(9) | 25.25–50.50(9) |
Good | 100–139.(9) | 50.51–70.70(9) |
Medium | 140–199.(9) | 70.71–100.(9) |
Bad | 200–399.(9) | 101–201.(9) |
Very Bad | >400 | >202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozma, A.; Firculescu, A.-C.; Tudose, D.; Ruse, L. Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring. Sensors 2022, 22, 860. https://doi.org/10.3390/s22030860
Cozma A, Firculescu A-C, Tudose D, Ruse L. Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring. Sensors. 2022; 22(3):860. https://doi.org/10.3390/s22030860
Chicago/Turabian StyleCozma, Alexandru, Adrian-Cosmin Firculescu, Dan Tudose, and Laura Ruse. 2022. "Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring" Sensors 22, no. 3: 860. https://doi.org/10.3390/s22030860
APA StyleCozma, A., Firculescu, A. -C., Tudose, D., & Ruse, L. (2022). Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring. Sensors, 22(3), 860. https://doi.org/10.3390/s22030860