Single-Layer-Graphene-Coated and Gold-Film-Based Surface Plasmon Resonance Prism Coupler Sensor for Immunoglobulin G Detection
Abstract
:1. Introduction
2. Materials
3. Graphene-Based SPR Sensor
4. Differential Mueller Matrix Formalism for Extraction of CD/LB Properties of IgG
5. Experimental Setup and Results
5.1. Determination of IgG Concentration in Mouse Serum Samples
5.2. Determination of IgG in Human Serum Ssamples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Infantino, M.; Damiani, A.; Gobbi, F.L.; Grossi, V.; Lari, B.; Macchia, D.; Casprini, P.; Veneziani, F.; Villalta, D.; Bizzaro, N.; et al. Serological assays for SARS-CoV-2 infected disease: Benefits, limiations and perspecrives. Isr. Med. Assoc. J. 2020, 22, 203–210. [Google Scholar] [PubMed]
- Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; et al. Development and clinical application of a rapid IgM-IgG combined anitibody test for SARS-Cov-2 infection diagnosis. J. Med. Viral. 2020, 92, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Ponde, R.A.d. Detection of serological markers hepatitis B virus surface antigen (HBsAg) and hepatitis B core IgM antibody (anti-HBcIgM) in the diagnosis of acute hepatitis B virus infection after recent exposure. Microbiol. Immunol. 2021, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vickers, I.; Harvey, K.; Nelson, K.; Brown, M.; Ducasse, M.B.; Lindo, J. Evaluation of onestep dengue NS1 rapidip instatest and one step dengue fever IgG/IgM repiard instatest during the course of a dengue type 1 epidemic. Diagn. Microbiol. Infect. Dis. 2017, 89, 271–275. [Google Scholar] [CrossRef]
- Nagar, P.K.; Savargaonkar, D.; Anvikar, A.R. Detection of dengue virus specific IgM and IgG antibodies through peptide sequences of envelope and NS1 proteins for serological identification. J. Immunol. Res. 2020, 2020, 820325. [Google Scholar] [CrossRef]
- Bajpai, V.; Gupta, E.; Kundu, N.; Sharma, S.; Shashtry, S.M. Hepatitis B core antibody negativity in a chronic hepatitis B infected patient: Report of an unusual serological pattern. J. Clin. Diagn. Res. 2017, 11, DD04–DD06. [Google Scholar] [CrossRef]
- Wang, Q.; Jing, J.Y.; Wang, B.T. Highly sensitive SPR biosensor based on graphene oxide and staphylococcal protein a co-modified TFBG for human IgG detection. IEEE Trans. Instrum. Meas. 2019, 68, 3350–3357. [Google Scholar] [CrossRef]
- Lin, Q.; Wen, D.; Wu, J.; Liu, L.; Wu, W.; Fang, X.; Kong, J. Microfluidic immunoassays for sensitive and simultaneous detection of IgG/IgM/Antigen of SARS-Cov-2 within 15 min. Anal. Chem. 2020, 92, 9454–9458. [Google Scholar] [CrossRef]
- Jiang, W.S.; Xin, W.; Xun, S.; Chen, S.N.; Gao, X.G.; Liu, Z.B.; Tian, J.G. Reduced graphene oxide based optical sensor for detecting specific protein. Sens. Actuators B Chem. 2017, 249, 142–148. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorievaand, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peresand, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 031901. [Google Scholar] [CrossRef]
- Pang, Y.; Han, X.; Yang, Y.; Ling, J.; Jian, M.; Zhang, Y.; Yang, Y.; Ren, T.-L. Graphene textile strain sensor with negative resistance viriation for human motion detection. ACS Nano 2018, 12, 9134–9141. [Google Scholar]
- Mishra, A.K.; Mishra, S.K.; Verma, R.K. Graphene and beyond graphene MoS2: A new window in surface plasmon resonance based fiber optic sensing. J. Phys. Chem. 2016, 120, 2893–2900. [Google Scholar] [CrossRef]
- Farmani, A. Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Tech. Lett. 2019, 31, 643–646. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, Y.L.; Byun, K.M. Graphene on silver substrates for sensitive surface plasmon resonance imaging biosensor. Opt. Express 2011, 19, 458–466. [Google Scholar] [CrossRef]
- Giovannini, T.; Bonatti, L.; Polini, M.; Cappelli, C. Graphene plasmonics: Fully atomistic approach for realistic structures. J. Phys. Chem. Lett. 2020, 11, 7595–7602. [Google Scholar] [CrossRef]
- Zeng, S.; Sreekanth, K.V.; Shang, J.; Yu, T.; Chen, C.K.; Yin, F.; Baillargeat, D.; Coquet, P.; Ho, H.P.; Kabashin, A.V.; et al. Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mat. 2015, 27, 6163–6169. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D.; Keiser, G. Performance analysis of graphene based surface plasmon resonance biosensor for blood glucose and gas detection. Appl. Phys. A 2020, 126, 153. [Google Scholar] [CrossRef]
- Chiu, N.F.; Kuo, C.T.; Lin, T.L.; Chang, C.C.; Chen, C.Y. Ultra-high sensitivity of the non-immunological affinity of graphene oxide peptide based surface plasmon resonance biosensor to detect human chorionic gonadotropin. Biosens. Bioelectron. 2017, 94, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Song, D.Q.; Zhang, D.; Sun, Y. An enhanced SPR immunosensing platform for human IgG based on the use of silver nanocubes and carboxy functionalized graphene oxide. Microchim. Acta 2019, 183, 2177–2184. [Google Scholar] [CrossRef]
- Suárez-Bermejo, J.C.; de Sande, J.C.G.; Santarsiero, M.; Piquero, G. Mueller matrix polarimetry using full Poincaré beams. Opt. Lasers Eng. 2019, 122, 134–141. [Google Scholar] [CrossRef]
- He, H.; Zeng, N.; Li, D.; Liao, R.; Ma, H. Quantitative Mueller matrix polarimetry techniques for biological tissues. J. Innov. Opt. Health Sci. 2012, 5, 1250017. [Google Scholar] [CrossRef]
- Swami, M.K.; Manhas, S.; Patel, H.; Gupta, P.K. Mueller matrix measurement on absorbing turbid media. Appl. Opt. 2010, 49, 3458–3464. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Qi, J.; He, H.H.; Ma, H.; Elson, D.S. Extended polar decomposition method of Mueller matrices for turbid media in reflection geometry. Opt. Lett. 2017, 42, 4048–4051. [Google Scholar] [CrossRef]
- Pham, T.H.H.; Nguyen, A.L.T.; Vo, T.V.; Huynh, K.C.; Phan, Q.H. Optical parameters of human blood plasma, collagen, and calfskin based on the Stokes Mueller technique. Appl. Opt. 2018, 57, 4353–4358. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, N.; He, H.; Yun, T.; Du, E.; Liao, R.; He, Y.; Ma, H. A study on forward scattering Mueller matrix decomposition in anisotropic medium. Opt. Express 2013, 21, 18361–18370. [Google Scholar] [CrossRef]
- Azzam, R.M. Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus. J. Opt. Soc. Am. 1978, 68, 1756–1767. [Google Scholar] [CrossRef] [Green Version]
- Ossikovsk, R.; Kuntman, M.A.; Arteaga, O. Anisotropic integral decomposition of depolarizing Mueller matrices. OSA Contin. 2019, 2, 1900–1907. [Google Scholar] [CrossRef] [Green Version]
- Quijano, N.O.; Diego, J.L.A. Mueller matrix differential decomposition. Opt. Lett. 2011, 36, 1942–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quijano, N.O.; Diego, J.L.A. Mueller matrix differential decomposition for direction reversal: Application to samples measures in reflection and backscattering. Opt. Express 2011, 19, 14348–14353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, Q.H.; Lai, Y.R.; Xiao, W.Z.; Pham, T.T.H.; Lien, C.H. Surface plasmon resonance prism coupler for enhanced circular birefringence sensing and application to noninvasive glucose detection. Opt. Express 2020, 28, 24889–24899. [Google Scholar] [CrossRef] [PubMed]
- Phan, Q.H.; Jian, T.H.; Huang, Y.R.; Lai, Y.R.; Xiao, W.Z.; Chen, S.W. Combination of surface plasmon resonance and differential Mueller matrix formalism for noninvasive glucose sensing. Opt. Lasers Eng. 2020, 134, 106268. [Google Scholar] [CrossRef]
- Phan, Q.H.; Han, C.Y.; Lien, C.H.; Pham, T.T.H. Dual retarder Mueller polarimetry system for extraction of optical properties of serum albumin protein media. Sensors 2021, 21, 3442. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Jen, Y.J. Use of Ta2O5 biaxial thin films as a high efficiency polarization converter. J. Nanophotonics 2012, 6, 061507. [Google Scholar] [CrossRef]
- Berreman, D.W. Optics in stratified and anisotropic media: 4 × 4 matrix formulation. J. Opt. Soc. Am. 1972, 62, 502–510. [Google Scholar] [CrossRef]
- Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C.W.; McDonnell, S.; Colombo, L.; Vogel, E.M.; Ruoff, R.S.; Wallace, R.M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108. [Google Scholar] [CrossRef] [Green Version]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Liao, C.C.; Lo, Y.L. Extraction of anisotropic parameters of turbid media using hybrid model comprising differential and decomposition-based Mueller matrices. Opt. Express 2013, 21, 16831–16853. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wu, Q.; Ma, P.; Xu, L.; Zhang, F.; Li, D.; Liu, X.; Xu, S.; Sun, Y.; Song, D.; et al. Selective and sensitive fluorescence detection method for pig IgG based on competitive immunosensing strategy and magnetic bioseparation. Talanta 2019, 195, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Krel, M.; Dolgov, E.; Park, S.; Li, X.; Wu, W.; Sun, Y.-L.; Zhang, J.; Kyaw, M.; Oo, K.; et al. Rapid and quantitative detection of SARS-Cov-2 specific IgG for convalescent serum evaluation. Biosens. Bioeletron. 2020, 169, 112372. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.S. Electrochemical immunosensors for the simultaneous detection of two tumor markers. Anal. Chem. 2005, 77, 1496–1502. [Google Scholar] [CrossRef]
Phase Retardation of LCVRs | State of Polarization | |
---|---|---|
δ1 | δ2 | |
90° | 270° | 0° |
0° | 0° | 45° |
90° | 90° | 90° |
90° | 180° | R- |
Actual Glucose Concentration (mg/dL) | Sensing Medium | Range of Detection (ng/mL) | Resolution (ng/mL) | Ref. |
---|---|---|---|---|
Immunoassay and magnetic bio-separation | Pig IgG serum | 0–25 × 103 | 5 × 103 | [42] |
Enzyme-linked immunosorbent assay | Human IgG serum | 0–1000 | 100 | [43] |
Enzyme-linked immunosorbent assay | Mouse, goat IgG serum | 0–100 | 20 | [44] |
SPR-graphene oxide | Rabbit IgG serum | 0–100 × 103 | 62.5 | [7] |
SPR-graphene oxide | Human IgG serum | 0–100 × 103 | 5 × 103 | [9] |
SPR-single-layer graphene | Human, mouse IgG serum | 0–250 | 5–10 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.-W.; Pham, T.-T.-H.; Hsu, C.-C.; Lien, C.-H.; Phan, Q.-H. Single-Layer-Graphene-Coated and Gold-Film-Based Surface Plasmon Resonance Prism Coupler Sensor for Immunoglobulin G Detection. Sensors 2022, 22, 1362. https://doi.org/10.3390/s22041362
Yang Z-W, Pham T-T-H, Hsu C-C, Lien C-H, Phan Q-H. Single-Layer-Graphene-Coated and Gold-Film-Based Surface Plasmon Resonance Prism Coupler Sensor for Immunoglobulin G Detection. Sensors. 2022; 22(4):1362. https://doi.org/10.3390/s22041362
Chicago/Turabian StyleYang, Zhe-Wei, Thi-Thu-Hien Pham, Chin-Chi Hsu, Chi-Hsiang Lien, and Quoc-Hung Phan. 2022. "Single-Layer-Graphene-Coated and Gold-Film-Based Surface Plasmon Resonance Prism Coupler Sensor for Immunoglobulin G Detection" Sensors 22, no. 4: 1362. https://doi.org/10.3390/s22041362
APA StyleYang, Z. -W., Pham, T. -T. -H., Hsu, C. -C., Lien, C. -H., & Phan, Q. -H. (2022). Single-Layer-Graphene-Coated and Gold-Film-Based Surface Plasmon Resonance Prism Coupler Sensor for Immunoglobulin G Detection. Sensors, 22(4), 1362. https://doi.org/10.3390/s22041362