Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern
Abstract
:1. Introduction
2. Materials and Methods
2.1. EEG Acquisition
2.2. Proposed Visual Stimulation
2.2.1. Proposed Mixing of Flicker Frequencies
2.2.2. Proposed Visual Stimulation Using QR Code Patterns
2.3. SSVEP Detection Methods
2.3.1. Power Spectral Density (PSD)
2.3.2. Canonical Correlation Analysis (CCA)
2.4. Experiments
2.5. Observation of SSVEP Responses from QR Code Flickering Pattern Stimulation
3. Results
3.1. Evaluation of Mixing Flicker Frequencies
3.2. Evaluation of QR Code Pattern as SSVEP Stimulus
3.3. Visual Fatigue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulkader, S.N.; Atia, S.; Mostafa, M.M. Brain Computer Interface: Applications and Challenges. Egypt. Inform. J. 2019, 96, 213–230. [Google Scholar]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtsheller, G.; Vaughan, T.M. Brain-Computer Interface for Communication and Control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Mridha, M.F.; Das, S.C.; Kabir, M.M.; Lima, A.A.; Islam, M.R.; Watanobe, Y. Brain-Computer Interface: Advancement and Challenges. Sensors 2021, 21, 5746. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Alonso, L.F.; GomezGil, J. Brain Computer interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Jamil, N.; Belkacem, A.N.; Ouhbi, S.; Lakas, A. Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain-Computer Interfaces: A Systematic Literature Review. Sensors 2021, 21, 4754. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Abdulhalim, K. A Brief Review of Brain Signal Monitoring Technologies for BCI Applications: Challenges and Prospects. J. Bioeng. Biomed. Sci. 2012, 4, 1–10. [Google Scholar]
- Birbaumer, N.; Ramos Murguialday, A.; Weber, C.; Montoya, P. Neurofeedback and brain-computer interface clinical applications. Int. Rev. Neurobiol. 2009, 86, 107–117. [Google Scholar]
- Alkawadri, R. Brain–Computer Interface (BCI) Applications in Mapping of Epileptic Brain Networks Based on Intracranial-EEG: An Update. Front. Neurosci. 2019, 13, 191. [Google Scholar] [CrossRef] [Green Version]
- McFarland, D.J.; Daly, J.; Boulay, C.; Parvaz, M.A. Therapeutic Application of BCI Technologies. Brain Comput. Interface 2017, 47, 37–52. [Google Scholar] [CrossRef]
- Kerous, B.; Skola, F.; Liarokapis, F. EEG-based BCI and video games: A progress report. Virtual Real. 2018, 22, 119–135. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Fuhlbrigge, T. A Review of the Commercial Brain-Computer Interface Technology from Perspective of Industrial Robotics. In Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong and Macau, 16–20 August 2010. [Google Scholar]
- Yang, L.; Ma, R.; Zhang, H.M.; Guan, W.; Jiang, S. Driving behavior recognition using EEG data from a simulated car-following experiment. Accid. Anal. Prev. 2018, 116, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Nakayashiki, K.; Saeki, M.; Takata, Y.; Hayashi, Y.; Kondo, T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. Neuroeng. Rehabil. 2014, 11, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei Tabar, Y.; Halici, U. Brain Computer Interfaces for Silent Speech. Eur. Rev. 2017, 25, 208–230. [Google Scholar] [CrossRef]
- Fazel-Rezai, R.; Allison, B.Z.; Guger, C.; Sellers, E.W.; Kleih, S.C.; Kübler, A. P300 brain computer interface: Current challenges and emerging trends. Front. Neuroeng. 2012, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vialatte, F.B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010, 90, 418–438. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Bieger, J.; Molina, G.G.; Aarts, R.M. A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci. 2010, 2010, 702357. [Google Scholar] [CrossRef]
- Amari, S.; Ahmed, R.; Azinfar, L.; Fazel-Rezai, R. A Review of P300, SSVEP, and Hybrid P300/SSVEP Brain-Computer Interface Systems, Brain-Computer Interface Systems-Recent Progress and Future Prospects, Reza Fazel-Rezai; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Käthner, I.; Wriessnegger, S.C.; Müller-Putz, G.R.; Kübler, A.; Halder, S. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol. Psychol. 2014, 102, 118–129. [Google Scholar] [CrossRef]
- Makri, D.; Farmaki, C.; Sakkalis, V. Visual fatigue effects on Steady State Visual Evoked Potential-based Brain Computer Interfaces. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 70–73. [Google Scholar]
- Zhu, Y.; Li, Y.; Lu, J.; Li, P. A Hybrid BCI Based on SSVEP and EOG for Robotic Arm Control. Front. Neurorobot. 2020, 14, 583641. [Google Scholar] [CrossRef]
- Punsawad, Y.; Wongsawat, Y. Multi-command SSAEP-based BCI system with training sessions for SSVEP during an eye fatigue state. IEEJ Trans. Electr. Electron. Eng. 2017, 12, S72–S78. [Google Scholar] [CrossRef]
- Cao, T.; Wan, F.; Mak, P.U.; Mak, P.; Vai, M.I.; Hu, Y. Flashing Color on the Performance of SSVEP-based Brain-Computer Interfaces. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Duart, X.; Quiles, E.; Suay, F.; Chio, N.; Gracia, E.; Morant, F. Evaluating the Effect of Stimuli Color and Frequency on SSVEP. Sensors 2021, 21, 117. [Google Scholar] [CrossRef]
- Waytowich, N.R.; Yamani, Y.; Krusienski, D.J. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain–Computer Interfaces. EEE Trans. Neural. Syst. Rehabil. Eng. 2017, 25, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Keihani, A.; Shirzhiyan, Z.; Farahi, M.; Shamsi, E.; Mahnam, A.; Makkiabadi, B.; Haidari, M.R.; Jafari, A.H. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects. Front. Hum. Neurosci. 2018, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Park, S.; Im, C. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort. Comput. Intell. Neurosci. 2019, 2019, 9680697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, J.; Grayden, D.B.; Tan, Y.; Oetomo, D. Frequency Superposition– A Multi-Frequency Stimulation Method in SSVEP-based BCIs. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 5924–5927. [Google Scholar]
- Wong, C.M.; Wang, B.; Wan, F.; Mak, P.U.; Mak, P.I.; Vai, M.I. A Solution to Harmonic Frequency Problem: Frequency and Phase Coding based Brain-Computer Interface. In Proceedings of the 2011 international Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2119–2126. [Google Scholar]
- Stawicki, P.; Volosyak, I. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain-Computer Interfaces. Brain Sci. 2020, 10, 686. [Google Scholar] [CrossRef]
- Rekrut, M.; Jungbluth, T.; Alexandersson, J.; Krüger, A. Spinning Icons: Introducing a Novel SSVEP-BCI Paradigm Based on Rotation. In Proceedings of the 26th Annual Conference on Intelligent User Interface, Virtually Hosted by Texas A&M University, College Station, TX, USA, 13–17 April 2021; pp. 234–243. [Google Scholar]
- Hong, K.S.; Khan, M.J. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review. Front. Neurorobot. 2017, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Punsawad, Y.; Wongsawat, Y.; Parnichkun, M. Hybrid EEG-EOG brain-computer interface system for practical machine control. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1360–1363. [Google Scholar]
- Khan, M.J.; Hong, K.S. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control. Front. Neurorobot. 2017, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Muller-Putz, G.R.; Pfurtscheller, G. Control of an Electrical Prosthesis With an SSVEP-Based BCI. IEEE Trans. Biomed. Eng. 2008, 55, 361–364. [Google Scholar] [CrossRef]
- Siribunyaphat, N.; Punsawad, Y.; Wongsawat, Y. Development of Flicker Visual Stimulus by Mixing Fundamental and Its Harmonic Frequencies for SSVEP-based Brain-Computer Interface. In Proceedings of the 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunication, and Information Technology (ECTI-CON), Chiang Mai, Thailand, 19–22 May 2021. [Google Scholar]
- Pandya, K.H.; Galiyawala, H.J. A survey on QR Codes: In context of Research and Application. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 258–262. [Google Scholar]
- Yan, W.; Xu, G.; Li, M.; Xie, J.; Han, C.; Zhang, S.; Luo, A.; Chen, C. Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement. PLoS ONE 2017, 12, e0169642. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, S.Q.; Wang, H.; Zhang, Z. Data Analytics in Steady-State Visual Evoked Potential-Based Brain-Computer Interface: A Review. Sensors 2021, 21, 1124–1138. [Google Scholar] [CrossRef]
- Wang, Y.; Nakanishi, M.; Wang, Y.T.; Jung, T.P. Enhancing detection of steady-state visual evoked potentials using individual training data. In Proceedings of the 2014 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 3037–3040. [Google Scholar]
- Same, M.H.; Gandubert, G.; Gleeton, G.; Ivanov, P.; Landry, R., Jr. Simplified Welch Algorithm for Spectrum Monitoring. Appl. Sci. 2021, 11, 86. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs. IEEE Trans. Biomed. Eng. 2007, 54 Pt 2, 1172–1176. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | Proposed Method | Visual Stimuli | Electrode Positions | Result(s) |
---|---|---|---|---|
Duart et al., 2020 [24] | Effect of stimuli color and frequency | Red, green, and white color with 5, 12, and 30 Hz frequencies on the auxiliary display. | PO3, PO4, Pz, O1, O2, Oz |
|
Waytowich et al., 2016 [25] | Optimization of checkerboard spatial frequencies | Solid background to single-pixel checkerboard pattern with 2.4 cycles per degree. | Oz, O1, O2, POz, PO3, PO4, PO7, PO8 | Spatial frequency can have a dramatic effect on SSVEP performance that is consistent across subjects |
Keihani et al., 2018 [26] | 3-sequence frequency | LED and three-fiber optic sensor with high frequencies (25, 30, and 35 Hz). | O1, Oz, O2 | Accuracy rate for PSD was 88.35% and more than 90% for CCA and Least Absolute Shrinkage and Selection Operator Analysis (LASSO). |
Choi et al., 2019 [27] | SSVEP in virtual reality (VR) environments | Pattern-reversal checkerboard stimulus (PRCS) and Grow/shrink stimulus (GSS): star pattern, luminance change and size in head-mounted displays (HMDs). | Cz, PO3, POz, PO4, O1, Oz, O2 | GSS has higher accuracy than PRCS, but the visual comfort score is the same for both. |
Mu et al., 2021 [28] | Multi-frequency (superimposing with OR and ADD) | Red LED with two 50% duty cycle square waves with the OR and ADD operator with frequencies of 7 and 9 Hz, 7 and 11 Hz, 7 and 13 Hz, 9 and 11 Hz, 9 and 13 Hz, and 11 and 13 Hz. | PO3, POz, PO4, O1, Oz, O2 | Average accuracy of 70.83% on frequency superposition stimulation. |
Stawicki and Volosyak, 2021 [30] | Steady State Motion visual evoked potentials (SSMVEPs) | Full-color circle (SSVEP, (SSMVEP1, SSMVEP2) and Checkerboard circle (SSMVEP3-5) with frequencies of 7.06, 7.50, 8.00, and 8.57 Hz. | Pz, P3, P4, P5, P6, PO3, PO4, PO7, PO8, Oz, O1, O2, O9, O10, POO1, POO2 | Average accuracy between 97.22% and 100% and an average ITR between 15.42 and 33.92 bits/min. |
Rekrut et al., 2021 [31] | Spinning Icons SSVEP | Spinning icons including check, arrow, box, cross, gear, icon check, icon email, icon PDF, icon spread, and icon text with frequencies of 7.5, 10, and 13 Hz. | Oz, P7, P3, Pz, P4, T7, Cz, T8, F3 | Highest accuracy is 86% from cross SSMVEP followed by PDF icon with an accuracy of 75% (which is a remarkable result for a three-class classification problem with a chance level of 33.3%). |
Flicker | Pattern | Flickering Frequency | |
---|---|---|---|
Fundamental | Sub/Harmonics | ||
1 | Single | 7 Hz | - |
2 | Single | 13 Hz | - |
3 | Single | 17 Hz | |
4 | Mixture | 7 Hz | 14 Hz |
5 | Mixture | 13 Hz | 6.5 Hz |
6 | Mixture | 7, 13 Hz | - |
7 | Mixture | 7, 17 Hz | - |
8 | Mixture | 13, 17 Hz | - |
Flicker Patterns | Average Classification Accuracy (%) | ||||
---|---|---|---|---|---|
SSVEP Detection Methods | |||||
PSD | CCA | ||||
Checkerboard | QR Code | Checkerboard | QR Code | ||
1 | 90.9 | 89.3 | 84.9 | 87.3 | |
2 | 88.0 | 90.6 | 89.3 | 91.2 | |
3 | 85.9 | 91.8 | 85.3 | 89.5 | |
4 | + | 83.7 | 90.2 | 87.1 | 90.5 |
5 | + | 84.9 | 93.4 | 91.2 | 94.4 |
6 | ++ | 87.9 | 90.5 | 87.3 | 92.3 |
7 | ++ | 84.7 | 89.3 | 89.5 | 91.8 |
8 | ++ | 87.1 | 88.0 | 90.5 | 93.0 |
Mean ± SD. | 86.6 ± 2.32 | 90.4 ± 1.66 | 88.1 ± 2.34 | 91.2 ± 2.19 |
Participants | Average Classification Accuracy (%) | |||
---|---|---|---|---|
SSVEP Detection Methods | ||||
PSD | CCA | |||
Checkerboard | QR Code | Checkerboard | QR Code | |
1 | 89.8 | 90.5 | 90.6 | 90.5 |
2 | 84.3 | 87.5 | 91.3 | 94.4 |
3 | 85.2 | 89.8 | 85.8 | 88.2 |
4 | 85.8 | 89.1 | 89.1 | 89.7 |
5 | 89.8 | 85.9 | 83.5 | 90.5 |
6 | 83.6 | 89.7 | 84.3 | 94.0 |
7 | 84.4 | 93.0 | 85.8 | 92.5 |
8 | 86.6 | 90.6 | 85.8 | 91.3 |
9 | 84.4 | 90.5 | 89.8 | 91.7 |
10 | 85.9 | 89.7 | 87.5 | 93.8 |
11 | 85.9 | 90.6 | 86.6 | 89.8 |
12 | 89.1 | 85.9 | 88.2 | 90.9 |
Mean ± SD. | 86.2 ± 2.19 | 89.4 ± 2.06 | 87.4 ± 2.43 | 91.4 ± 1.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siribunyaphat, N.; Punsawad, Y. Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern. Sensors 2022, 22, 1439. https://doi.org/10.3390/s22041439
Siribunyaphat N, Punsawad Y. Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern. Sensors. 2022; 22(4):1439. https://doi.org/10.3390/s22041439
Chicago/Turabian StyleSiribunyaphat, Nannaphat, and Yunyong Punsawad. 2022. "Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern" Sensors 22, no. 4: 1439. https://doi.org/10.3390/s22041439
APA StyleSiribunyaphat, N., & Punsawad, Y. (2022). Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern. Sensors, 22(4), 1439. https://doi.org/10.3390/s22041439