Experiment and Analysis of Temperature Sensing of Microstructured Fiber with Silver and PDMS Films
Abstract
:1. Introduction
2. Experimental Principle and Fabrication Process
2.1. Silver Plating by Silver Mirror Reaction
2.2. Manufacturing Process of PDMS-Wrapped MSF
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roriz, P.; Silva, S.; Frazão, O.; Novais, S. Optical fiber temperature sensors and their biomedical applications. J. Sci. Sens. 2020, 20, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Sánchez-Pena, J. A novel high-sensitivity, low-power, liquid crystal temperature sensor. J. Sci. Sens. 2014, 14, 6571–6583. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.S.J. Photonic-crystal fibers. J. Sci. Lightwave Technol. 2006, 24, 4729–4749. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Pan, S.S.; Shum, P.; Yan, M.; Leviatan, Y.; Li, C.M. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Sci. Opt. 2009, 12, 015005. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Li, S.G.; Chen, H.L.; Li, J.S.; Fan, Z.K. High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. J. Sci. Appl. Phys. Express 2015, 8, 046701. [Google Scholar] [CrossRef]
- Lin, Y.C. A fiber optic alcohol sensor based on surface plasmon resonance. J. Sci. Microw. Opt. Technol. Lett. 2014, 56, 766–769. [Google Scholar] [CrossRef]
- Trouillet, A.; Ronot-Trioli, C.; Veillas, C.; Gagnaire, H. Chemical sensing by surface plasmon resonance in a multimode optical fibre. J. Sci. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1996, 5, 227–237. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of Surface Plasmon Polaritons. J. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Jorgenson, R.C.; Yee, S.S. A fiber-optic chemical sensor based on surface plasmon resonance. J. Sci. Sens. Actuators B Chem. 2003, 12, 213–220. [Google Scholar] [CrossRef]
- Iga, M.; Seki, A.; Watanabe, K. Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. J. Sci. Sens. Actuators B Chem. 2004, 106, 363–368. [Google Scholar] [CrossRef]
- Liu, C.; Wang, F.; Lv, J.; Sun, T.; Liu, Q.; Fu, C.; Mu, H.; Chu, P.K. A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. J. Sci. Opt. Commun. 2016, 359, 378–382. [Google Scholar] [CrossRef]
- Yang, C.X.; Lu, Y.; Liu, L.B.; Yao, J. Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber. J. Sci. IEEE Sens. J. 2017, 99, 6948–6952. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Zhao, Y.; Li, J. Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating. J. Sci. Opt. Fiber Technol. 2016, 34, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Pang, F.; Xiang, W.; Guo, H.; Chen, N.; Zeng, X.; Chen, Z.; Wang, T. Special optical fiber for temperature sensing based on cladding-mode resonance. J. Sci. Opt. Express 2008, 16, 12967. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Liang, Y.; Li, L.; Masson, J.-F.; Peng, W. Liquid crystal filled surface plasmon resonance thermometer. J. Sci. Opt. Express 2016, 24, 10904–10911. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wang, H.; Zhou, H.; Lin, T. Ultrafine PDMS fibers: Preparation from in situ curing-electrospinning and mechanical characterization. RSC Adv. 2014, 4, 11782–11787. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yu, Y.S.; Zhu, C.C.; Chen, C.; Yang, R.; Xue, Y.; Chen, Q.-D.; Sun, H.-B. Miniature end-capped fiber sensor for refractive index and temperature measurement. J. Sci. IEEE Photonics Technol. Lett. 2014, 26, 7–10. [Google Scholar] [CrossRef]
- Hernández-Romano, I.; Cruz-Garcia, M.A.; Moreno-Hernández, C.; Monzón-Hernández, D.; López-Figueroa, E.O.; Paredes-Gallardo, O.E.; Villatoro, J. Optical fiber temperature sensor based on a microcavity with polymer overlay. J. Sci. Opt. Express 2016, 24, 5654. [Google Scholar] [CrossRef]
- Park, C.S.; Joo, K.I.; Kang, S.W.; Kim, H.-R. A PDMS-coated optical fiber bragg grating sensor for enhancing temperature sensitivity. J. Sci. J. Opt. Soc. Korea 2011, 15, 329–334. [Google Scholar] [CrossRef]
- Gao, H.; Hu, H.; Zhao, Y.; Li, J.; Lei, M.; Zhang, Y. Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures. Sens. Actuators A Phys. 2018, 284, 22–27. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, J.S.; Monzon-Hernandez, D.; Martinez-Pinon, F.; May-Arrioja, D.A.; Hernandez-Romano, I. Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 126–131. [Google Scholar] [CrossRef]
- Yadav, T.K.; Narayanaswamy, R.; Bakar, M.H.A.; Kamil, Y.M.; Mahdi, M.A. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. J. Sci. Opt. Express 2019, 22, 22802. [Google Scholar] [CrossRef] [PubMed]
- Boehm, J.; François, A.; Ebendorff-Heidepriem, H.; Monro, T.M. Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. J. Sci. Plasmon. 2010, 6, 133–136. [Google Scholar] [CrossRef]
- Saito, Y.; Wang, J.J.; Batchelder, D.N.; Smith, D.A. Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments. J. Sci. Langmuir 2003, 19, 6857–6861. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Datta, A.; Berg, J.M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Sci. J. Microelectromech. Syst. 2005, 14, 590–597. [Google Scholar] [CrossRef]
- Chang-Yen, D.A.; Eich, R.K.; Gale, B.K. A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J. Sci. J. Lightwave Technol. 2005, 23, 2088–2093. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, Q.; Zhu, W.; Yang, M.; Lewis, E. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. J. Sci. Opt. Express 2018, 26, 1910. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, S.; Guo, Y.; Li, H.; Wang, Y.; Zhou, X.; Cheng, T. Experiment and Analysis of Temperature Sensing of Microstructured Fiber with Silver and PDMS Films. Sensors 2022, 22, 1447. https://doi.org/10.3390/s22041447
Li S, Zhang S, Guo Y, Li H, Wang Y, Zhou X, Cheng T. Experiment and Analysis of Temperature Sensing of Microstructured Fiber with Silver and PDMS Films. Sensors. 2022; 22(4):1447. https://doi.org/10.3390/s22041447
Chicago/Turabian StyleLi, Shuguang, Song Zhang, Ying Guo, Hongyu Li, Yujun Wang, Xue Zhou, and Tonglei Cheng. 2022. "Experiment and Analysis of Temperature Sensing of Microstructured Fiber with Silver and PDMS Films" Sensors 22, no. 4: 1447. https://doi.org/10.3390/s22041447
APA StyleLi, S., Zhang, S., Guo, Y., Li, H., Wang, Y., Zhou, X., & Cheng, T. (2022). Experiment and Analysis of Temperature Sensing of Microstructured Fiber with Silver and PDMS Films. Sensors, 22(4), 1447. https://doi.org/10.3390/s22041447