SVIoT: A Secure Visual-IoT Framework for Smart Healthcare
Abstract
:1. Introduction
- We propose an efficient security framework, SVIoT, based on the novel concept of ODNMI.
- The use of ODNMI in SVIoT ensures reduction of computational complexity and storage/bandwidth requirements by 50 percent.
- We make use of an innovative mechanism of Left Data Shifting (LDS) before embedding data, to ensure better stego-image quality for high embedding rates.
2. Related Literature
3. Proposed Framework: SVIoT
3.1. One Dimensional Neighbor Mean Interpolation (ODNMI)
3.2. AES-128 Encryption and Data Shifting
3.3. Data Embedding
3.3.1. Technique-1: Direct Embedding
3.3.2. Technique-2: Embedding with LDS
Algorithm 1: Watermark embedding in Cover-Image |
INPUT: Original Image “I”, Watermark, Secret Data |
Step: 1 Take an input image “I” of size M × N. |
Step: 2 Generate cover “C” of size M × 2N, by interleaving columns at alternate levels using ODNMI. |
Step: 3 Take a fragile watermark sized (n × n). |
Step: 4 Convert the watermark to a single row vector. |
Step: 5 Take the secret data as a bitstream of a single-row vector and interleave the watermark bits in the data at regular intervals. In the proposed case one watermark bit is being interleaved after every 47 secret data bits. Apply AES-128 encryption to the secret data. |
Step: 6 Covert all three-bit chunks into corresponding decimal equivalents by using binary to decimal conversion. |
Step: 7 For Technique 1: Set three LSBs of all data pixels to zero, excluding seed pixels. |
For Technique 2: Apply LDS to the resultant decimal equivalents. |
Step: 8 Add the decimal equivalents to the corresponding data pixels. |
Step: 9 Repeat Step 8 till all decimal equivalents of the secret data are embedded to obtain stego-image. |
OUTPUT: Stego Image “S” |
3.4. Data Extraction
Algorithm 2: Watermark and secret data extraction from Stego-Image |
INPUT: Stego Image “S” |
Step: 1 Let “S” be the received stego image sized (M × 2N). |
Step: 2 Extract the original image “I” of size (M × N) from the seed pixels. |
Step: 3 |
Technique-1: Extract the data embedded in the three least significant bits of each pixel. |
Technique-2: Reverse the boundary conditions deployed during the process of embedding and extract the last three bits from each non-seed pixel |
Step: 4 Save the decimal equivalents in a data extraction row matrix. |
Step: 5 Convert the matrix into a binary row with the help of decimal to binary conversion. |
Step: 6 Reshape the matrix to a 48-column matrix and extract the 48th column, which contains the data of the fragile watermark. |
Step:7 Reshape the 48th column bits obtained in step 6 into a (64 × 64) binary matrix, which is then extracted fragile watermark. |
Step:8 Reshape the remaining 47 columns matric obtained in step 6 into a row matrix to yield the embedded secret. Apply AES-128 decryption to obtain the actual secret information. |
OUTPUT: Original Image “I”, Watermark “W”, and Secret Data “D” |
4. Results and Discussion
4.1. Imperceptibility Analysis
4.2. Reversibility Analysis
4.3. Computational Complexity and Memory Usage
4.4. Authentication Analysis
4.5. A Brief Discussion of the Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, W.; Xu, J.; Qiao, H.; Zhou, M.; Liang, B. Visual IoT: Enabling Internet of Things Visualization in Smart Cities. IEEE Netw. 2019, 33, 102–110. [Google Scholar] [CrossRef]
- Tanwar, S.; Bhatia, Q.; Patel, P.; Kumari, A.; Singh, P.K.; Hong, W.C. Machine Learning Adoption in Blockchain-Based Smart Applications: The Challenges, and a Way Forward. IEEE Access 2019, 8, 474–488. [Google Scholar] [CrossRef]
- Butt, S.A.; Diaz-Martinez, J.L.; Jamal, T.; Ali, A.; Franco, E.; Shoaib, M. IoT Smart Health Security Threats. In Proceedings of the 19th International Conference on Computational Science and Its Applications (ICCSA), Saint Petersburg, Russia, 1–4 July 2019. [Google Scholar]
- Nasir, H.; Parah, S.A.; Sheikh, J.; Turjman, F.; Khan, M. Secure data transmission framework for confidentiality in IoTs. Ad Hoc Netw. 2019, 95, 101989. [Google Scholar]
- 2021 Breach Barometer. Available online: https://www.protenus.com/resources/2021-breach-barometer/ (accessed on 12 December 2021).
- Gull, S.; Parah, S.A.; Khan, M. Reversible data hiding exploiting Huffman encoding with dual images for IoMT based healthcare. Comput. Commun. 2020, 163, 134–149. [Google Scholar] [CrossRef]
- Muhammad, B.; Ataur, R.; Fahim, A.; Gwanggil, J. Energy-harvesting based on internet of things and big data analytics for smart health monitoring. Sustain. Comput. Bioinf. Syst. 2018, 20, 155–164. [Google Scholar]
- Qian, Z.; Zhang, X.; Feng, G. Reversible data hiding in encrypted images based on progressive recovery. IEEE Signal Process. Lett. 2016, 23, 1672–1676. [Google Scholar] [CrossRef]
- Gull, S.; Mansour, R.F.; Aljehane, N.O.; Parah, S.A. A self-embedding technique for tamper detection and localization of medical images for smart-health. Multimed. Tools Appl. 2021, 80, 29939–29964. [Google Scholar] [CrossRef]
- Liu, X.; Lin, C.; Yuan, S. Blind Dual Watermarking for Color Images’ Authentication and Copyright Protection. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1047–1055. [Google Scholar] [CrossRef]
- Wahed, M.A.; Nyeem, H. High capacity reversible data hiding with interpolation and adaptive embedding. PLoS ONE 2019, 14, e0212093. [Google Scholar] [CrossRef] [Green Version]
- Gull, S.; Loan, N.A.; Parah, S.A.; Sheikh, J.A.; Bhat, G.M. An efficient watermarking technique for tamper detection and localization of medical images. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 1799–1808. [Google Scholar] [CrossRef]
- Puteaux, P.; Puech, W. Rebuttal: On the Security of Reversible Data Hiding in Encrypted Images by MSB Prediction. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2445–2446. [Google Scholar] [CrossRef]
- Rinki, K.; Verma, P.; Singh, R.K. A novel matrix multiplication based LSB substitution mechanism for data security and authentication. J. King Saud Univ.–Comput. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Tseng, H.W.; Leng, H.S. A reversible modified least significant bit (LSB) matching revisited method. Signal Process. Image Commun. 2022, 101, 116556. [Google Scholar] [CrossRef]
- Chen, C.; Tsai, Y.; Yeh, H. Difference-expansion based reversible and visible image watermarking scheme. Multimed. Tools Appl. 2017, 76, 8497–8516. [Google Scholar] [CrossRef]
- Hu, R.; Xiang, S. Reversible Data Hiding by Using CNN Prediction and Adaptive Embedding. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- He, W.; Cai, Z. Reversible Data Hiding Based on Dual Pairwise Prediction-Error Expansion. IEEE Trans. Image Process. 2021, 30, 5045–5055. [Google Scholar] [CrossRef]
- Showkat, S.; Parah, S.A.; Gull, S. Embedding in medical images with contrast enhancement and tamper detection capability. Multimed. Tools Appl. 2021, 80, 2009–2030. [Google Scholar] [CrossRef]
- Hussan, M.; Parah, S.A.; Qurashi, G.J. Realization of a Reversible Data Hiding Framework using Histogram Bin Shifting for Color Images. In Proceedings of the Fifth International Conference on Image Information Processing, Shimla, India, 15–17 November 2019. [Google Scholar]
- He, W.; Xiong, G.; Wang, Y. Reversible Data Hiding Based on Adaptive Multiple Histograms Modification. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3000–3012. [Google Scholar] [CrossRef]
- Arsalan, M.; Sana, A.M.; Asifullah, K. Intelligent reversible watermarking in integer wavelet domain for medical images. J. Syst. Softw. 2012, 85, 883–894. [Google Scholar] [CrossRef]
- Naheed, T.; Usman, I.; Khan, T.M.; Dar, A.H.; Shafique, M.F. Intelligent reversible watermarking technique in medical images using GA and PSO. Opt. Int. J. Light Electron. Opt. 2014, 125, 2515–2525. [Google Scholar] [CrossRef]
- Lee, C.F.; Huang, Y.L. An efficient image interpolation increasing payload in reversible data hiding. Expert Syst. Appl. 2012, 39, 6712–6719. [Google Scholar] [CrossRef]
- Jung, K.H.; Yoo, K.Y. Data hiding method using image interpolation. Comput. Stand. Interfaces 2009, 31, 465–470. [Google Scholar] [CrossRef]
- Kaw, J.A.; Parah, S.A.; Sheikh, J.A.; Bhat, G.M. A new reversible stenographic technique based on pixel repetition method (PRM) and special data shifting (SDS). In Proceedings of the Fourth International Conference on Image Information, Shimla, India, 21–23 December 2017. [Google Scholar]
- Kaw, J.A.; Loan, N.A.; Parah, S.A.; Muhammad, K.; Sheikh, J.A.; Bhat, G.M. A reversible and secure patient information hiding system for IoT driven e-health. Int. J. Inf. Manag. 2019, 45, 262–275. [Google Scholar] [CrossRef]
- Abadi, M.; Danyali, H.; Helfroush, M.S. Reversible watermarking based on interpolation error histogram shifting. In Proceedings of the 5th International Symposium on Telecommunications (IST), Kish Island, Iran, 4–6 December 2010. [Google Scholar]
- Luo, L.; Chen, Z.; Chen, M.; Zeng, X.; Xiong, Z. Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 2010, 5, 187–193. [Google Scholar]
- Parah, S.A.; Ahad, F.; Sheikh, J.A.; Bhat, G.M. Hiding clinical information in medical images: A new high capacity and reversible data hiding technique. J. Biomed. Inf. 2017, 66, 214–230. [Google Scholar] [CrossRef]
Image No | Technique-1 (without the Use of LDS) | Technique-2 (with the Use of LDS) | ||||
---|---|---|---|---|---|---|
PSNR (dB) | SSIM | %BER | PSNR(dB) | SSIM | %BER | |
1. | 40.089 | 0.979 | 0 | 43.73 | 0.989 | 0 |
2. | 40.93 | 0.962 | 0 | 43.76 | 0.980 | 0 |
3. | 40.982 | 0.969 | 0 | 43.74 | 0.984 | 0 |
4. | 40.954 | 0.96 | 0 | 43.74 | 0.978 | 0 |
5. | 40.958 | 0.97 | 0 | 43.75 | 0.983 | 0 |
6. | 40.021 | 0.956 | 0 | 43.75 | 0.979 | 0 |
7. | 40.923 | 0.942 | 0 | 43.75 | 0.968 | 0 |
8. | 40.917 | 0.939 | 0 | 43.76 | 0.965 | 0 |
9. | 40.953 | 0.966 | 0 | 43.75 | 0.981 | 0 |
10. | 39.19 | 0.772 | 0 | 43.74 | 0.970 | 0 |
11. | 38.947 | 0.751 | 0 | 43.76 | 0.967 | 0 |
12. | 39.191 | 0.766 | 0 | 43.78 | 0.968 | 0 |
Scheme | Average PSNR (dB) | Capacity (bpp) |
---|---|---|
Jung et al. [25] | 33.24 | 0.96 |
Lee et al. [24] | 33.79 | 1.59 |
Parah et al. [30] | 46.36 | 0.75 |
Naheed et al. [23] (GA Scheme) | 49.01 | 0.15 |
Naheed et al. [23] (PSO Scheme) | 49.00 | 0.15 |
Luo et al. [29] | 48.94 | 0.14 |
Wahed and Nyeem [11] | 47.61 | 1.5 |
Kaw et al. [27] | 43.6 | 1.25 |
Proposed | ||
Technique-1 | 40.338 | 1.5 |
Technique-2 | 43.75 | 1.5 |
Image | Embedding time (s) |
---|---|
Image: 1 | 0.4804 |
Image: 2 | 0.4316 |
Image: 3 | 0.4336 |
Image: 7 | 0.4472 |
Image: 8 | 0.4550 |
Image: 9 | 0.4277 |
Average | 0.4459 |
Original Image Size | Memory Needed to Store Stego-Image Using NMI | Memory Needed to Store Stego-Image Using ODNMI |
---|---|---|
512 × 512 = 256 KB | 1024 KB | 512 KB |
256 × 256 = 64 KB | 256 KB | 128 KB |
128 × 128 = 16 KB | 64 KB | 32 KB |
Attacked Stego Image | Tech-1 Average BER (%) = 43.916 | |||||
---|---|---|---|---|---|---|
Salt and Pepper Noise Density = 0.01 | Median Filtering [3 × 3] | |||||
PSNR | SSIM Cover Attacked Stego | Erroneous Primary Data Bits | PSNR | SSIM Cover Attacked Stego | Erroneous Primary Data Bits | |
Image-1 | 25.59 | 0.798 | 949 | 28.8 | 0.803 | 76410 |
Image-2 | 25.32 | 0.733 | 956 | 39.1 | 0.963 | 96191 |
Image-3 | 24.44 | 0.783 | 1009 | 32.54 | 0.925 | 74547 |
Image-4 | 25.31 | 0.732 | 988 | 36.48 | 0.96 | 77441 |
Image-5 | 25.31 | 0.778 | 970 | 33.07 | 0.91 | 74960 |
Image-6 | 24.44 | 0.763 | 949 | 33.93 | 0.918 | 80290 |
Image-7 | 25.27 | 0.668 | 911 | 44.21 | 0.985 | 84888 |
Image-8 | 24.99 | 0.668 | 933 | 42.67 | 0.979 | 87739 |
Image-9 | 25.11 | 0.743 | 1031 | 40.63 | 0.984 | 72935 |
Image-10 | 23.65 | 0.647 | 960 | 26.7 | 0.846 | 85542 |
Image-11 | 23.23 | 0.613 | 1015 | 31.06 | 0.885 | 87244 |
Image-12 | 23.08 | 0.611 | 914 | 29.11 | 0.861 | 86083 |
Av. Values | 24.64 | 0.711 | 34.85 | 0.918 |
Attacked Stego Image | Tech-2 Average BER (%) = 45.148 | |||||
---|---|---|---|---|---|---|
Salt and Pepper Noise Density = 0.01 | Median Filtering [3 × 3] | |||||
PSNR | SSIM Cover Attacked Stego | Erroneous Primary Data Bits | PSNR | SSIM Cover Attacked Stego | Erroneous Primary Data Bits | |
Image-1 | 25.9 | 0.815 | 2840 | 28.8 | 0.806 | 93,582 |
Image-2 | 25.38 | 0.747 | 2795 | 39.49 | 0.967 | 88,322 |
Image-3 | 24.44 | 0.792 | 2981 | 32.54 | 0.921 | 90,932 |
Image-4 | 25.49 | 0.753 | 2771 | 36.72 | 0.964 | 90,184 |
Image-5 | 25.1 | 0.777 | 2871 | 33.16 | 0.913 | 88,876 |
Image-6 | 24.22 | 0.772 | 2346 | 34.2 | 0.93 | 94,053 |
Image-7 | 25.27 | 0.682 | 2815 | 45.02 | 0.99 | 88,238 |
Image-8 | 24.93 | 0.681 | 2903 | 43.39 | 0.986 | 89,726 |
Image-9 | 25.22 | 0.753 | 2929 | 41.03 | 0.987 | 77,294 |
Image-10 | 23.41 | 0.792 | 2017 | 26.57 | 0.793 | 96,549 |
Image-11 | 23.39 | 0.784 | 1866 | 30.62 | 0.823 | 95,625 |
Image-12 | 23.69 | 0.781 | 2026 | 28.85 | 0.804 | 94,576 |
Av. Values | 24.70 | 0.760 | 35.03 | 0.907 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaw, J.A.; Gull, S.; Parah, S.A. SVIoT: A Secure Visual-IoT Framework for Smart Healthcare. Sensors 2022, 22, 1773. https://doi.org/10.3390/s22051773
Kaw JA, Gull S, Parah SA. SVIoT: A Secure Visual-IoT Framework for Smart Healthcare. Sensors. 2022; 22(5):1773. https://doi.org/10.3390/s22051773
Chicago/Turabian StyleKaw, Javaid A., Solihah Gull, and Shabir A. Parah. 2022. "SVIoT: A Secure Visual-IoT Framework for Smart Healthcare" Sensors 22, no. 5: 1773. https://doi.org/10.3390/s22051773
APA StyleKaw, J. A., Gull, S., & Parah, S. A. (2022). SVIoT: A Secure Visual-IoT Framework for Smart Healthcare. Sensors, 22(5), 1773. https://doi.org/10.3390/s22051773