A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts
Abstract
:1. Introduction
- Document the low-cost sensors used, their integration into a human thermal comfort monitoring system, and communication;
- Assess the uncertainty in measuring different environmental variables used for thermal comfort calculations and the uncertainty in the integral thermal comfort relative to commercial state-of-the art sensors;
- Assess the difference in calculating Tmrt using different combinations of sensors—with and without a black globe thermometer;
- Demonstrate whether the network of devices can resolve differences between workplaces in the same building and between workplaces in different companies in the same city.
2. Materials and Methods
2.1. Sensor Design
2.1.1. Air Temperature and Humidity
2.1.2. Mean Radiant Temperature
2.1.3. Wind Velocity
2.1.4. Enclosure and Sensor Screens
2.1.5. Display and Communication
2.2. Different Methods to Determine Tmrt
2.3. Evaluation of the Complete Sytem
2.4. Comparison of the Thermal Comfort Levels between Different Workplaces
3. Results and Discussion
3.1. Performance of the Different Tmrt Estimation Methods
3.2. Evaluation of the System for Thermal Comfort Modelling
3.3. Resolving Different Thermal Comfort Levels between Different Workplaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Performance of Different Low-Cost Air Temperature/Humidity Sensors
Sensor | Calibration Coefficients | RMSE (Calibrated) (K) | RMSE (Raw) (K) | MBE (Calibrated) (K) | MBE (Raw) (K) | MAE (Calibrated) (K) | MAE (Raw) (K) | |
---|---|---|---|---|---|---|---|---|
Offset | Slope | |||||||
AM2320 | −0.131 | 1.021 | 0.063 | 0.458 | −0.003 | −0.266 | 0.051 | 0.391 |
DHT22 (#1) | −0.086 | 1.025 | 0.068 | 0.593 | 0.004 | −0.388 | 0.052 | 0.501 |
DHT22 (#2) | −0.177 | 1.025 | 0.072 | 0.542 | −0.001 | −0.303 | 0.056 | 0.465 |
HTU21D (#1) | 0.427 | 1.001 | 0.063 | 0.459 | −0.001 | −0.454 | 0.045 | 0.454 |
HTU21D (#2) | 0.670 | 1.002 | 0.061 | 0.662 | −0.001 | −0.659 | 0.044 | 0.659 |
MCP9808 (#1) | 0.055 | 1.003 | 0.058 | 0.144 | 0.000 | −0.119 | 0.045 | 0.128 |
MCP9808 (#2) | 0.224 | 1.002 | 0.064 | 0.263 | −0.001 | −0.254 | 0.049 | 0.254 |
BME680 (#1) | 0.360 | 0.988 | 0.056 | 0.265 | 0.001 | −0.117 | 0.041 | 0.208 |
BME680 (#2) | 0.925 | 0.981 | 0.070 | 0.669 | 0.001 | −0.562 | 0.051 | 0.562 |
BME280 (#1) | 1.325 | 0.990 | 0.068 | 1.162 | 0.000 | −1.146 | 0.060 | 1.146 |
BME280 (#2) | 1.142 | 0.989 | 0.071 | 0.960 | −0.001 | −0.936 | 0.063 | 0.936 |
Sensor | Calibration Coefficients | RMSE (Calibrated) (hPa) | RMSE (Raw) (hPa) | MBE (Calibrated) (hPa) | MBE (Raw) (hPa) | MAE (Calibrated) (hPa) | MAE (Raw) (hPa) | |
---|---|---|---|---|---|---|---|---|
Offset | Slope | |||||||
AM2320 | 0.595 | 0.782 | 0.476 | 2.247 | 0.005 | 2.162 | 0.405 | 2.162 |
DHT22 (#1) | 0.075 | 1.003 | 0.102 | 0.146 | −0.002 | −0.103 | 0.074 | 0.125 |
DHT22 (#2) | 0.036 | 0.968 | 0.107 | 0.330 | −0.001 | 0.308 | 0.075 | 0.309 |
HTU21D (#1) | 0.388 | 0.967 | 0.131 | 0.144 | 0.003 | −0.039 | 0.088 | 0.099 |
HTU21D (#2) | 0.321 | 0.982 | 0.132 | 0.191 | 0.003 | −0.137 | 0.090 | 0.161 |
BME680 (#1) | −0.379 | 1.044 | 0.204 | 0.227 | −0.002 | −0.079 | 0.157 | 0.189 |
BME680 (#2) | −0.367 | 1.055 | 0.200 | 0.290 | −0.001 | −0.196 | 0.153 | 0.253 |
BME280 (#1) | 0.986 | 1.017 | 0.139 | 1.150 | −0.002 | −1.141 | 0.102 | 1.41 |
BME280 (#2) | 0.860 | 0.998 | 0.132 | 0.855 | −0.001 | 0.845 | 0.097 | 0.845 |
Appendix B. Performance of Different Black Globe Thermometer Variants
Number | Material | Diameter (m) | Paint |
---|---|---|---|
1 | Stainless steel | 0.05 | Matte black acrylic spray paint |
2 | Plastic | 0.05 | Matte black acrylic spray paint |
3 | Plastic | 0.05 | Matte black acrylic spray paint |
4 | Plastic | 0.025 | Matte black acrylic spray paint |
5 | Plastic | 0.025 | Matte black acrylic spray paint |
6 | Plastic | 0.05 | Matte black acrylic paint |
7 | Stainless steel | 0.025 | Matte black acrylic spray paint |
8 | Stainless steel | 0.05 | Matte black acrylic paint |
9 | Table tennis ball | 0.04 | Matte black acrylic paint |
10 | Plastic | 0.025 | Matte black acrylic paint |
11 | Table tennis ball | 0.04 | None |
12 | Table tennis ball | 0.04 | Matte black acrylic paint |
13 | Plastic | 0.05 | Matte black acrylic paint |
14 | Table tennis ball | 0.04 | Matte black acrylic spray paint |
15 | Table tennis ball | 0.04 | None |
16 | Table tennis ball | 0.04 | Matte black acrylic spray paint |
17 | Stainless steel | 0.025 | Matte black acrylic paint |
Number | Optimized Convection Coefficient | RMSE (Optimized) | RMSE (Raw) | MBE (Optimized) | MBE (Raw) | MAE (Optimized) | MAE (Raw) |
---|---|---|---|---|---|---|---|
1 | 3.104 | 5.441 | −1.381 | −2.400 | 1.713 | 3.391 | |
2 | 3.257 | 6.724 | −1.486 | −2.773 | 1.831 | 4.453 | |
3 | 3.143 | 6.419 | −1.473 | −2.729 | 1.815 | 4.168 | |
4 | 3.257 | 7.089 | −1.551 | −3.006 | 1.961 | 4.651 | |
5 | 3.007 | 6.930 | −1.168 | −2.678 | 1.746 | 4.739 | |
6 | 2.571 | 6.224 | −1.120 | −2.482 | 1.484 | 4.205 | |
7 | 2.696 | 6.399 | −1.106 | −2.548 | 1.589 | 4.325 | |
8 | 1.956 | 4.610 | −0.130 | −1.332 | 0.954 | 3.392 | |
9 | 2.789 | 6.823 | −2.052 | −3.307 | 2.301 | 4.270 | |
10 | 3.658 | 7.273 | −2.912 | −4.052 | 3.103 | 4.568 | |
11 | 3.813 | 7.897 | −3.055 | −4.093 | 3.242 | 4.856 | |
12 | 2.502 | 7.022 | −1.732 | −3.138 | 2.042 | 4.534 | |
13 | 1.910 | 5.656 | −2.635 | −1.293 | 1.580 | 3.603 | |
14 | 2.281 | 6.667 | −2.946 | −1.477 | 1.867 | 4.326 | |
15 | 3.080 | 7.785 | −3.517 | −2.149 | 2.564 | 5.005 | |
16 | 2.258 | 6.756 | −2.893 | −1.377 | 1.841 | 4.457 | |
17 | 2.276 | 6.648 | −2.898 | −1.249 | 1.838 | 4.391 |
Appendix C. Performance of Low-Cost Infrared Thermopile Sensors
Sensor | RMSE (K) | MBE (K) | MAE (K) |
---|---|---|---|
TMP007 (#1) | 5.059 | −0.310 | 4.536 |
TMP007 (#2) | 6.367 | −0.675 | 5.988 |
TMP006 (#1) | 5.614 | −1.225 | 5.098 |
TMP006 (#2) | 5.088 | −1.185 | 4.631 |
MLX90615 (#1) | 1.330 | −0.520 | 0.844 |
MLX90615 (#2) | 1.391 | −0.703 | 0.944 |
Appendix D. Calibration of the Cup Anemometer
Appendix E. Performance of Different Enclosures and Screens
Version | Alignment | Position of the Air Temperature Sensor | Ventilation Slats | Reflective Tape | Fan |
---|---|---|---|---|---|
1 | Vertical | In extra box inside | Top and right | X | |
2 | Vertical | In extra box inside | Top and right | ||
3 | Vertical | In extra box inside | Top and right | X | |
4 | Vertical | In extra box on top | Front, left and right | ||
5 | Horizontal | In extra box on the right | Left, right, front, back, bottom, top | ||
6 | Vertical | In plastic tube (Ø = 25 mm) on top | Front and back | X | |
7 | Vertical | In plastic tube (Ø = 20 mm) on top | Front and back | X | |
8 | Vertical | In plastic tube (Ø = 40 mm) on top | Front and back | X | |
9 | Without enclosure | ||||
10 | Horizontal | In an extra box on the right | Left, right, front, back, bottom | X | |
11 | Horizontal | In an extra box on the right | Left, right, front, back, bottom, top | ||
12 | Horizontal | In plastic tube (Ø = 25 mm) on the right | Front and back | X | |
13 | Horizontal | In plastic tube (Ø = 20 mm) on the right | Front and back | X |
Version | RMSE (Inside) | MBE (Inside) | MAE (Inside) | RMSE (Outside) | MBE (Outside) | MAE (Outside) |
---|---|---|---|---|---|---|
1 | 1.042 | 0.913 | 0.913 | 6.803 | 4.524 | 4.533 |
2 | 1.448 | 1.418 | 1.418 | 4.370 | 3.335 | 3.335 |
3 | 0.689 | 0.657 | 0.657 | 1.617 | 0.876 | 1.083 |
4 | 0.428 | 0.300 | 0.341 | 4.801 | 2.865 | 3.099 |
5 | 0.233 | 0.195 | 0.214 | 2.886 | 1.742 | 1.925 |
6 | 0.593 | 0.500 | 0.501 | 2.420 | 1.710 | 1.776 |
7 | 1.241 | 1.180 | 1.183 | 2.908 | 1.830 | 1.994 |
8 | 0.407 | 0.372 | 0.375 | 2.608 | 1.867 | 1.887 |
9 | 0.231 | 0.192 | 0.203 | 4.781 | 2.848 | 3.058 |
10 | 0.099 | −0.022 | 0.075 | 2.245 | 1.650 | 1.673 |
11 | 0.181 | −0.125 | 0.138 | 3.185 | 1.860 | 2.074 |
12 | 0.374 | −0.329 | 0.329 | 1.805 | 1.215 | 1.300 |
13 | 0.299 | −0.253 | 0.253 | 2.728 | 1.456 | 1.513 |
References
- Jendritzky, G.; Fiala, D.; Havenith, G.; Koppe, C.; Laschewski, G.; Staiger, H.; Tinz, B. Thermische Umweltbedingungen. Promet 2007, 33, 83–94. [Google Scholar]
- Shevchenko, O.; Lee, H.; Snizhko, S.; Mayer, H. Long-Term Analysis of Heat Waves in Ukraine. Int. J. Climatol. 2014, 34, 1642–1650. [Google Scholar] [CrossRef]
- Cheung, S.S.; Lee, J.K.W.; Oksa, J. Thermal Stress, Human Performance, and Physical Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S148–S164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venugopal, V.; Chinnadurai, J.S.; Lucas, R.A.I.; Kjellstrom, T. Occupational Heat Stress Profiles in Selected Workplaces in India. Int. J. Environ. Res. Public Health 2016, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Urban, H.; Steininger, K.W. Manufacturing and Trade: Labour Productivity Losses. In Economic Evaluation of Climate Change Impacts: Development of a Cross-Sectoral Framework and Results for Austria; Steininger, K.W., König, M., Bednar-Friedl, B., Kranzl, L., Loibl, W., Prettenthaler, F., Eds.; Springer International Publishing: Cham, Swizerland, 2015; pp. 301–322. ISBN 978-3-319-12457-5. [Google Scholar]
- McGregor, G.R.; Bessemoulin, P.; Ebi, K.L.; Menne, B.; World Meteorological Organization; World Health Organization. Heatwaves and Health: Guidance on Warning-System Development; WHO: Geneva, Switzerland, 2015; ISBN 978-92-63-11142-5. [Google Scholar]
- Matzarakis, A. Communication Aspects about Heat in an Era of Global Warming—The Lessons Learnt by Germany and Beyond. Atmosphere 2022, 13, 226. [Google Scholar] [CrossRef]
- Narocki, C. Heatwaves as an Occupational Hazard: The Impact of Heat and Heatwaves on Workers’ Health, Safety and Wellbeing and on Social Inequalities. European Trade Union Institute (ETUI). Report 2021.06. Available online: https://www.etui.org/publications/heatwaves-occupational-hazard (accessed on 30 November 2021).
- IPCC. IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021; in press; ISBN 978-92-9169-158-6. [Google Scholar]
- Muthers, S.; Laschewski, G.; Matzarakis, A. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change. Atmosphere 2017, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A. Health Impacts of Workplace Heat Exposure: An Epidemiological Review. Ind. Health 2014, 52, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, I.; Ebi, K.L.; McGregor, G. Biometeorology for Adaptation to Climate Variability and Change. In Biometeorology for Adaptation to Climate Variability and Change; Ebi, K.L., Burton, I., McGregor, G.R., Eds.; Biometeorology; Springer: Dordrecht, The Netherlands, 2009; pp. 1–5. ISBN 978-1-4020-8921-3. [Google Scholar]
- Matzarakis, A. Curiosities about Thermal Indices Estimation and Application. Atmosphere 2021, 12, 721. [Google Scholar] [CrossRef]
- Kaynakli, O.; Kilic, M. Investigation of Indoor Thermal Comfort under Transient Conditions. Build. Environ. 2005, 40, 165–174. [Google Scholar] [CrossRef]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and Methods in Outdoor Thermal Comfort Studies—The Need for Standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Martinelli, L.; Ketterer, C. Relevance of Thermal Indices for the Assessment of the Urban Heat Island. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer: Cham, Switzerland, 2016; pp. 93–107. [Google Scholar]
- Fabbri, K. Indoor Thermal Comfort Perception; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-18650-4. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a Universal Thermal Index: Physiological Equivalent Temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, D.; Matzarakis, A. Modeling of Changes in Thermal Bioclimate: Examples Based on Urban Spaces in Freiburg, Germany. Ther. Appl. Clim. 2013, 111, 547–558. [Google Scholar] [CrossRef]
- Mauree, D.; Coccolo, S.; Deschamps, L.; Loesch, P.; Becquelin, P.; Scartezzini, J.-L. Mobile Urban Micrometeorological Monitoring (MUMiM). J. Phys. Conf. Ser. 2019, 1343, 012014. [Google Scholar] [CrossRef] [Green Version]
- Takakura, J.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Hasegawa, T.; Honda, Y.; Masui, T. Cost of Preventing Workplace Heat-Related Illness through Worker Breaks and the Benefit of Climate-Change Mitigation. Environ. Res. Lett. 2017, 12, 064010. [Google Scholar] [CrossRef]
- van Hooff, T.; Blocken, B.; Timmermans, H.J.P.; Hensen, J.L.M. Analysis of the Predicted Effect of Passive Climate Adaptation Measures on Energy Demand for Cooling and Heating in a Residential Building. Energy 2016, 94, 811–820. [Google Scholar] [CrossRef]
- Mao, F.; Khamis, K.; Krause, S.; Clark, J.; Hannah, D.M. Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions. Front. Earth Sci. 2019, 7, 221. [Google Scholar] [CrossRef]
- Vargas-Salgado, C.; Montuori, L.; Bastida-Molina, P.; Alfoso-Solar, D. Arduino-Based Prototype to Estimate Heat Stress Indices in Urban Environments. In Proceedings of the 5th CARPE Conference: Horizon Europe and Beyond, València, Spain, 23 October 2019. [Google Scholar]
- Chiesa, G.; Yingjun, L.; Yuxuan, S.; Guoxin, W.; Bolun, Z. Development and Initial Tests of an Urban Comfort Monitoring System. J. Phys. Conf. Ser. 2021, 2042, 012051. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of NEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef] [PubMed]
- Kimmling, M.; Hoffmann, S. Behaglichkeitsmonitoring—Flächendeckend und kostengünstig mit der Sensorstation CoMoS. Bauphysik 2019, 41, 111–119. [Google Scholar] [CrossRef]
- Mthunzi, M.; Alsaad, H.; Voelker, C.; Smarsly, K. An Ultra-Low-Cost Thermal Comfort Monitoring Station; Bauphysiktage in Weimar: Weimar, Germany, 2019; pp. 62–66. [Google Scholar]
- Alfonso-Solar, D.; Bastida-Molina, P.; Montuori, L.; Vargas-Salgado, C. Monitoring and Evaluation of Thermal Comfort in Urban Areas: Application to Valencia City. In Proceedings of the 5th CARPE Conference: Horizon Europe and Beyond, València, Spain, 23–25 October 2019. [Google Scholar]
- Salamone, F.; Danza, L.; Meroni, I.; Pollastro, M.C. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques. Sensors 2017, 17, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I. Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users’ Feedback, IoT and Machine Learning: A Case Study. Sensors 2018, 18, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aosong (Guangzhou) Electronics Co. Temperature and Humidity Module. AM2302 Product Manual. Available online: https://akizukidenshi.com/download/ds/aosong/AM2302.pdf (accessed on 3 March 2021).
- Vargas-Salgado, C.; Chiñas-Palacios, C.; Aguila-León, J.; Alfonso-Solar, D. Measurement of the Black Globe Temperature to Estimate the MRT and WBGT Indices Using a Smaller Diameter Globe than a Standardized One: Experimental Analysis. In Proceedings of the 5th CARPE Conference: Horizon Europe and Beyond, València, Spain, 23 October 2019. [Google Scholar]
- Cigarini, F.; Fay, T.-A.; Artemenko, N.; Göhlich, D. Modeling and Experimental Investigation of Thermal Comfort and Energy Consumption in a Battery Electric Bus. World Electr. Veh. J. 2021, 12, 7. [Google Scholar] [CrossRef]
- Han, H.; Lee, J.; Kim, J.; Jang, C.; Jeong, H. Thermal Comfort Control Based on a Simplified Predicted Mean Vote Index. Energy Procedia 2014, 61, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Kovanen, K.; Seppänen, O.; Sirèn, K.; Majanen, A. Turbulent Air Flow Measurements in Ventilated Spaces. Environ. Int. 1989, 15, 621–626. [Google Scholar] [CrossRef]
- Humphreys, M.A.; Nicol, J.F.; Raja, I.A. Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach. Adv. Build. Energy Res. 2007, 1, 55–88. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal Comfort of Man in Different Urban Environments. Theor. Appl. Clim. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Baumgartner, L.; Penning, A.; Lampe, P.; Richerzhagen, B.; Steinmetz, R.; Freisleben, B. Environmental Monitoring Using Low-Cost Hardware and Infrastructureless Wireless Communication. In Proceedings of the 2018 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 18–21 October 2018; pp. 1–8. [Google Scholar]
- Walther, E.; Goestchel, Q. The P.E.T. Comfort Index: Questioning the Model. Build. Environ. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Matzarakis, A.; Muthers, S.; Koch, E. Human Biometeorological Evaluation of Heat-Related Mortality in Vienna. Theor. Appl. Clim. 2011, 105, 1–10. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y. Suitability of Acrylic and Copper Globe Thermometers for Diurnal Outdoor Settings. Build. Environ. 2015, 89, 279–294. [Google Scholar] [CrossRef]
- Kántor, N.; Lin, T.-P.; Matzarakis, A. Daytime Relapse of the Mean Radiant Temperature Based on the Six-Directional Method under Unobstructed Solar Radiation. Int. J. Biometeorol. 2014, 58, 1615–1625. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Walikewitz, N.; Jänicke, B.; Langner, M.; Meier, F.; Endlicher, W. The Difference between the Mean Radiant Temperature and the Air Temperature within Indoor Environments: A Case Study during Summer Conditions. Build. Environ. 2015, 84, 151–161. [Google Scholar] [CrossRef]
- Cheng, W.; Spengler, J.O.; Brown, R.D. A Comprehensive Model for Estimating Heat Vulnerability of Young Athletes. Int. J. Environ. Res. Public Health 2020, 17, 6156. [Google Scholar] [CrossRef]
- Klok, L.; Caverzam Barbosa, E.; van Zandbrink, L.; Kluck, J. Application and Performance of Kestrel Sensors for Assessing Thermal Comfort in Outdoor Built Environments. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Nielsen-Kellerman (Boothwyn, PA) Kestrel 5400 Series User Guide. Available online: https://kestrelinstruments.com/mwdownloads/download/link/id/14/ (accessed on 14 January 2022).
- Staiger, H.; Matzarakis, A. Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry. Atmosphere 2020, 11, 805. [Google Scholar] [CrossRef]
- Kántor, N.; Kovács, A.; Lin, T.-P. Looking for Simple Correction Functions between the Mean Radiant Temperature from the “Standard Black Globe” and the “Six-Directional” Techniques in Taiwan. Theor. Appl. Clim. 2015, 121, 99–111. [Google Scholar] [CrossRef]
- Lemke, B.; Kjellstrom, T. Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Ind. Health 2012, 50, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Mochida, A.; Yoshino, H.; Takeda, T.; Kakegawa, T.; Miyauchi, S. Methods for Controlling Airflow in and around a Building under Cross-Ventilation to Improve Indoor Thermal Comfort. J. Wind Eng. Ind. Aerodyn. 2005, 93, 437–449. [Google Scholar] [CrossRef]
- Chan, M.; Mak, C. Thermal Comfort Levels in a Room with Solar Radiation. Indoor Built Environ. 2008, 17, 516–524. [Google Scholar] [CrossRef]
- Marino, C.; Nucara, A.; Pietrafesa, M. Thermal Comfort in Indoor Environment: Effect of the Solar Radiation on the Radiant Temperature Asymmetry. Sol. Energy 2017, 144, 295–309. [Google Scholar] [CrossRef]
- Zani, A.; Mainini, A.G.; Cadena, J.D.B.; Schiavon, S.; Arens, E. A New Modeling Approach for the Assessment of the Effect of Solar Radiation on Indoor Thermal Comfort. In Proceedings of the 2018 Building Performance analysis Conference and SimBuild, Chicago, IL, USA, 26–28 September 2018. [Google Scholar]
- Gan, G. Analysis of Mean Radiant Temperature and Thermal Comfort. Build. Serv. Eng. Res. Technol. 2001, 22, 95–101. [Google Scholar] [CrossRef]
- La Gennusa, M.; Nucara, A.; Pietrafesa, M.; Rizzo, G. A Model for Managing and Evaluating Solar Radiation for Indoor Thermal Comfort. Sol. Energy 2007, 81, 594–606. [Google Scholar] [CrossRef]
- Bonefacic, I.; Wolf, I.; Frankovic, B. Numerical Modelling of Thermal Comfort Conditions in an Indoor Space with Solar Radiation Sources. SV-JME 2015, 61, 641–650. [Google Scholar] [CrossRef]
- Ashtiani, A.; Mirzaei, P.A.; Haghighat, F. Indoor Thermal Condition in Urban Heat Island: Comparison of the Artificial Neural Network and Regression Methods Prediction. Energy Build. 2014, 76, 597–604. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal Effects of Urban Street Shading on Long-Term Outdoor Thermal Comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- He, X.; Miao, S.; Shen, S.; Li, J.; Zhang, B.; Zhang, Z.; Chen, X. Influence of Sky View Factor on Outdoor Thermal Environment and Physiological Equivalent Temperature. Int. J. Biometeorol. 2015, 59, 285–297. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.-B. Counteracting Urban Climate Change: Adaptation Measures and Their Effect on Thermal Comfort. Theor. Appl. Clim. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Khamporn, N.; Chaiyapinunt, S. An Investigation on the Human Thermal Comfort from a Glass Window. Eng. J. 2014, 18, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Frederickson, L.B.; Petersen-Sonn, E.A.; Shen, Y.; Hertel, O.; Hong, Y.; Schmidt, J.; Johnson, M.S. Low-Cost Sensors for Indoor and Outdoor Pollution. In Air Pollution Sources, Statistics and Health Effects; Goodsite, M.E., Johnson, M.S., Hertel, O., Eds.; Springer: New York, NY, USA, 2021; pp. 423–453. ISBN 978-1-07-160595-0. [Google Scholar]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Laschewski, G.; Muthers, S. The Heat Health Warning System in Germany—Application and Warnings for 2005 to 2019. Atmosphere 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Gustin, M.; McLeod, R.S.; Lomas, K.J. Forecasting Indoor Temperatures during Heatwaves Using Time Series Models. Build. Environ. 2018, 143, 727–739. [Google Scholar] [CrossRef]
- Gustin, M.; McLeod, R.S.; Lomas, K.J.; Petrou, G.; Mavrogianni, A. A High-Resolution Indoor Heat-Health Warning System for Dwellings. Build. Environ. 2020, 168, 106519. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Thermodynamics. In Atmospheric Science; Elsevier: Amsterdam, The Netherlands, 2006; pp. 63–111. ISBN 978-0-12-732951-2. [Google Scholar]
- Schindler, D.; Fugmann, H.; Schönborn, J.; Mayer, H. Coherent Response of a Group of Plantation-Grown Scots Pine Trees to Wind Loading. Eur. J. For. Res 2012, 131, 191–202. [Google Scholar] [CrossRef]
- Kolbe, S.; Schindler, D. TreeMMoSys: A Low Cost Sensor Network to Measure Wind-Induced Tree Response. HardwareX 2021, 9, e00180. [Google Scholar] [CrossRef]
PET | Thermophysiological Stress Level |
---|---|
<4 °C | extreme cold stress |
4–8 °C | strong cold stress |
8–13 °C | moderate cold stress |
13–18 °C | slight cold stress |
18–23 °C | no thermal stress |
23–29 °C | slight heat stress |
29–35 °C | moderate heat stress |
35–41 °C | strong heat stress |
>41 °C | extreme heat stress |
# | Method | Calculation | Sensors Used |
---|---|---|---|
1 | Globe temperature | Equation (A1) (Appendix B) | Using black globe thermometer, air temperature thermistor, and cup anemometer (at semi-outdoor locations) |
2 | IR and L (Sphere) | Equation (2) with F = 0.167 | Using IR and light intensity sensor |
3 | IR and L (Person) | Equation (2) with F = 0.06 | Using IR and light intensity sensor |
4 | IR only | Tmrt = TIRT | Using IR sensor |
5 | Air temperature | Tmrt = Ta | Using air temperature thermistor |
# | Method | RMSE | MBE | MAE | MSE |
---|---|---|---|---|---|
1 | Globe temperature | 0.850 | −0.031 | 0.517 | 0.722 |
2 | IR and L (Sphere) | 1.030 | 0.543 | 0.761 | 1.060 |
3 | IR and L (Person) | 0.888 | 0.371 | 0.658 | 0.788 |
4 | IR only | 0.986 | 0.273 | 0.681 | 0.973 |
5 | Air temperature | 0.973 | 0.178 | 0.664 | 0.946 |
Variable | RMSE | MBE | MAE | MSE |
---|---|---|---|---|
Ta (K) | 0.296 | −0.127 | 0.193 | 0.088 |
ρv (hPa) | 0.291 | −0.121 | 0.194 | 0.085 |
Tmrt (K) | 0.849 | −0.027 | 0.517 | 0.721 |
PET (K) | 0.570 | −0.306 | 0.342 | 0.325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulzer, M.; Christen, A.; Matzarakis, A. A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts. Sensors 2022, 22, 1828. https://doi.org/10.3390/s22051828
Sulzer M, Christen A, Matzarakis A. A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts. Sensors. 2022; 22(5):1828. https://doi.org/10.3390/s22051828
Chicago/Turabian StyleSulzer, Markus, Andreas Christen, and Andreas Matzarakis. 2022. "A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts" Sensors 22, no. 5: 1828. https://doi.org/10.3390/s22051828
APA StyleSulzer, M., Christen, A., & Matzarakis, A. (2022). A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communication in Occupational Contexts. Sensors, 22(5), 1828. https://doi.org/10.3390/s22051828