Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach
Abstract
:1. Introduction
2. Related Work
3. System Model
4. DRL for Resource Management
Algorithm 1 Training Process for the Proposed Scheme |
1: Input: double DQN structure, vehicular environment simulator and V2V pair delay requirements |
2: Output: double DQN networks’ weights |
3: Initialize: experience replay buffer, the weights of train DQN θtrain and target DQN θtarget |
4: for each episode j = 1, 2,… do 5: Start the V2X environment simulator for each episode 6: Reset Ln,t = L and Tn,t = Tmax, for all n ∈ N |
7: for each iteration step t = 1,2,… do 8: Each V2V observes the observation on,t, sends it to BS 9: BS based on the current state st = { o1,t,…,on,t,…}, select the action according to the ϵ -greedy, then gets a reward rt+1, transforms to new state st+1 10: Store transition (st, at, rt+1, st+1) into experience replay buffer 11: Sample a mini-batch of D transition samples from experience replay buffer |
12: Calculate the target value according to Equation (19) 13: Update θtrain according to Equation (20) |
14: Update θtarget by setting θtarget = θtrain every K steps 15: end for 16: end for |
5. Simulation Results and Analysis
5.1. Simulation Settings
5.2. Performance Comparisons under Different Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balkus, S.V.; Wang, H.; Cornet, B.D.; Mahabal, C.; Ngo, H.; Fang, H. A Survey of Collaborative Machine Learning Using 5G Vehicular Communications. IEEE Commun. Surv. Tutor. 2022. [Google Scholar] [CrossRef]
- Kimura, T. Performance Analysis of Cellular-Relay Vehicle-to-Vehicle Communications. IEEE Trans. Veh. Technol. 2021, 70, 3396–3411. [Google Scholar] [CrossRef]
- Rahim, N.-A.-R.; Liu, Z.; Lee, H.; Ali, G.G.M.N.; Pesch, D.; Xiao, P. A Survey on Resource Allocation in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2020, 23, 701–721. [Google Scholar] [CrossRef]
- Yang, Y.; Hua, K. Emerging Technologies for 5G-Enabled Vehicular Networks. IEEE Access 2019, 7, 181117–181141. [Google Scholar] [CrossRef]
- Le, T.T.T.; Moh, S. Comprehensive Survey of Radio Resource Allocation Schemes for 5G V2X Communications. IEEE Access 2021, 9, 123117–123133. [Google Scholar]
- Gyawali, S.; Xu, S.; Qian, Y.; Hu, R.Q. Challenges and Solutions for Cellular Based V2X Communications. IEEE Commun. Surv. Tutor. 2021, 23, 222–255. [Google Scholar] [CrossRef]
- Kumar, A.S.; Zhao, L.; Fernando, X. Multi-Agent Deep Reinforcement Learning-Empowered Channel Allocation in Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 1726–1736. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, Y.; Zhao, L.; Li, W. A Vision of C-V2X: Technologies, Field Testing, and Challenges with Chinese De-velopment. IEEE Internet Things J. 2020, 7, 3872–3881. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, L.; Shankaran, R.; Xu, Y.; Orgun, M.A. Joint Power Control and Resource Allocation Mode Selection for Safety-Related V2X Communication. IEEE Trans. Veh. Technol. 2019, 68, 7970–7986. [Google Scholar] [CrossRef]
- Molina-Masegosa, R.; Gozalvez, J. LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications. IEEE Veh. Technol. Mag. 2017, 12, 30–39. [Google Scholar] [CrossRef]
- Abbas, F.; Fan, P.; Khan, Z. A Novel Low-Latency V2V Resource Allocation Scheme Based on Cellular V2X Communications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2185–2197. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Xu, Y.; Shankaran, R. Resource Allocation for D2D-Based V2X Communication with Imperfect CSI. IEEE Internet Things J. 2020, 7, 3545–3558. [Google Scholar] [CrossRef]
- Aslani, R.; Saberinia, E.; Rasti, M. Resource Allocation for Cellular V2X Networks Mode-3 with Underlay Approach in LTE-V Standard. IEEE Trans. Veh. Technol. 2020, 69, 8601–8612. [Google Scholar] [CrossRef]
- Jameel, F.; Khan, W.U.; Kumar, N.; Jäntti, R. Efficient Power-Splitting and Resource Allocation for Cellular V2X Communications. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3547–3556. [Google Scholar] [CrossRef]
- Tang, F.; Kawamoto, Y.; Kato, N.; Liu, J. Future Intelligent and Secure Vehicular Network toward 6G: Machine-Learning Approaches. Proc. IEEE 2019, 108, 292–307. [Google Scholar] [CrossRef]
- Hussain, F.; Hassan, S.A.; Hussain, R.; Hossain, E. Machine Learning for Resource Management in Cellular and IoT Networks: Potentials, Current Solutions, and Open Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1251–1275. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Mao, B.; Kato, N.; Gui, G. Comprehensive Survey on Machine Learning in Vehicular Network: Technology, Applications and Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2027–2057. [Google Scholar] [CrossRef]
- Liang, L.; Ye, H.; Yu, G.; Li, G.Y. Deep-Learning-Based Wireless Resource Allocation with Application to Vehicular Networks. Proc. IEEE 2020, 108, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, C. Multi-Agent Deep Reinforcement Learning Based Spectrum Allocation for D2D Underlay Communications. IEEE Trans. Veh. Technol. 2020, 69, 1828–1840. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Ye, H.; Li, G.Y. Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning. IEEE J. Sel. Areas Commun. 2019, 37, 2282–2292. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Wang, L.; Ye, H.; Li, G.Y.; Juang, B.-H.F. Resource Allocation based on Graph Neural Networks in Vehicular Communications. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–5. [Google Scholar]
- Yuan, Y.; Zheng, G.; Wong, K.-K.; Letaief, K.B. Meta-Reinforcement Learning Based Resource Allocation for Dynamic V2X Communications. IEEE Trans. Veh. Technol. 2021, 70, 8964–8977. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Shen, R.; Xu, Y.; Zheng, F.-C. DRL-Based Energy-Efficient Resource Allocation Frameworks for Uplink NOMA Systems. IEEE Internet Things J. 2020, 7, 7279–7294. [Google Scholar] [CrossRef]
- Gyawali, S.; Qian, Y.; Hu, R.Q. Resource Allocation in Vehicular Communications Using Graph and Deep Reinforcement Learning. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- He, C.; Hu, Y.; Chen, Y.; Zeng, B. Joint Power Allocation and Channel Assignment for NOMA with Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2019, 37, 2200–2210. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.-H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans. Veh. Technol. 2019, 68, 3163–3173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Peng, M.; Yan, S.; Sun, Y. Deep-Reinforcement-Learning-Based Mode Selection and Resource Allocation for Cellular V2X Communications. IEEE Internet Things J. 2020, 7, 6380–6391. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xie, X.; Kadoch, M.; Rong, B. Intelligent Resource Management Based on Reinforcement Learning for Ultra-Reliable and Low-Latency IoV Communication Networks. IEEE Trans. Veh. Technol. 2019, 68, 4157–4169. [Google Scholar] [CrossRef]
- Zhao, D.; Qin, H.; Song, B.; Zhang, Y.; Du, X.; Guizani, M. A Reinforcement Learning Method for Joint Mode Selection and Power Adaptation in the V2V Communication Network in 5G. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 452–463. [Google Scholar] [CrossRef]
- Technical Specification Group Radio Access Network; Study LTE-Based V2X Services; (Release 14), Document 3GPP TR 36.885 V14.0.0, 3rd Generation Partnership Project, June 2016. Available online: http://www.doc88.com/p-67387023571695.html(accessed on 23 February 2022).
- Garcia, M.H.C.; Molina-Galan, A.; Boban, M.; Gozalvez, J.; Coll-Perales, B.; Sahin, T.; Kousaridas, A. A Tutorial on 5G NR V2X Communications. IEEE Commun. Surv. Tutor. 2021, 23, 1972–2026. [Google Scholar] [CrossRef]
- Wu, W.; Liu, R.; Yang, Q.; Shan, H.; Quek, T.Q.S. Learning-Based Robust Resource Allocation for Ultra-Reliable V2X Communications. IEEE Trans. Wirel. Commun. 2021, 20, 5199–5211. [Google Scholar] [CrossRef]
- Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. Available online: https://arxiv.org/abs/1609.04747 (accessed on 23 February 2022).
Parameters | Values |
---|---|
Carrier frequency | 2 GHz |
Subcarrier bandwidth | 1 MHz |
BS antenna height | 25 m |
BS antenna gain | 8 dBi |
BS receive noise figure | 5 dB |
Vehicle antenna height | 1.5 m |
Vehicle antenna gain | 3 dBi |
Vehicle receive noise figure | 9 dB |
Transmit power of V2I | 35 dBm |
Transmit power of V2V | 23 dBm |
Number of V2I links | 4 |
Number of V2V pairs | 4 |
[λc, λv] | [0.1, 0.9] |
Noise power | −114 dBm |
Vehicle speed | 50 km/h |
Latency constraint of V2V links | 100 ms |
Parameters | V2I Link | V2V Link |
---|---|---|
Path loss model | 128.1 + 37.6log10(d), d in km | WINNER + B1 |
Shadowing distribution | Log-normal | Log-normal |
Shadowing standard deviation | 8 dB | 3 dB |
Decorrelation distance | 50 m | 10 m |
Fast fading | Rayleigh fading | Rayleigh fading |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Qin, X.; Huang, Y.; Tang, L.; Liu, Y. Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach. Sensors 2022, 22, 1874. https://doi.org/10.3390/s22051874
Fu J, Qin X, Huang Y, Tang L, Liu Y. Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach. Sensors. 2022; 22(5):1874. https://doi.org/10.3390/s22051874
Chicago/Turabian StyleFu, Jinjuan, Xizhong Qin, Yan Huang, Li Tang, and Yan Liu. 2022. "Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach" Sensors 22, no. 5: 1874. https://doi.org/10.3390/s22051874
APA StyleFu, J., Qin, X., Huang, Y., Tang, L., & Liu, Y. (2022). Deep Reinforcement Learning-Based Resource Allocation for Cellular Vehicular Network Mode 3 with Underlay Approach. Sensors, 22(5), 1874. https://doi.org/10.3390/s22051874