Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. CDB
2.2. Proposed Four-Channel CDB System
3. Results and Discussion
3.1. Experimental Setup
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buermans, H.P.J.; Den Dunnen, J.T. Next generation sequencing technology: Advances and applications. Biochim. Biophys. Acta 2014, 1842, 1932–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudhuin, L.M.; Yao, Y.; Richards, M.B.; Salas, A. A new era of genetic testing and its impact on research and clinical care. Clin. Chem. 2012, 58, 1070–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishna, B.M.; Khan, M.A.; Khan, S.T. Next-Generation Sequencing (NGS) Platforms: An Exciting Era of Genome Sequence Analysis. Microb. Genom. Sustain. Agroecosyst. 2019, 2, 89–109. [Google Scholar]
- Feng, Y.; Zhang, Y.; Ying, C.; Wang, D.; Du, C. Nanopore-based Fourth-generation DNA Sequencing Technology. Genom. Proteom. Bioinform. 2015, 13, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624. [Google Scholar] [CrossRef]
- Lipfert, J.; Doniach, S.; Das, R.; Herschlag, D. Understanding Nucleic Acid–Ion Interactions. Annu. Rev. Biochem. 2014, 83, 813–841. [Google Scholar] [CrossRef] [Green Version]
- Kasianowicz, J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [Google Scholar] [CrossRef] [Green Version]
- Faller, M.; Niederweis, M.; Schulz, G.E. The structure of a mycobacterial outer-membrane channel. Science 2004, 303, 1189–1192. [Google Scholar] [CrossRef]
- Majd, S.; Yusko, E.; Billeh, Y.; Macrae, M.X.; Yang, J.; Mayer, M. Applications of biological pores in nanomedicine. Curr. Opin. Biotechnol. 2010, 21, 439–476. [Google Scholar] [CrossRef] [Green Version]
- Akeson, M. Characterization of Individual Polymer Molecules Based on Monomer-Interface Interactions. U.S. Patent No. 6015714, 18 January 2000. [Google Scholar]
- Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; A Benner, S.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153. [Google Scholar] [CrossRef]
- Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Laver, T.; Harrison, J.; O’Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme, D.J. Assessing the performance of the Oxford Nanopore Techonologies MinION. Biomol. Detect. Quantif. 2015, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, T.; Li, M.; Wang, Y.; Liu, Z. Development of solid-state nanopore fabrication technologies. Sci. Bull. 2015, 60, 304–319. [Google Scholar] [CrossRef]
- Fürjes, P. Controlled focused ion beam milling of composite solid state nanopore arrays for molecule sensing. Micromachines 2019, 10, 774. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.; Rivera, J.A.; Bashir, R. Electron beam induced local crystallization of HfO2 nanopores for biosensing applications. Nanoscale 2013, 5, 10887–10893. [Google Scholar] [CrossRef] [Green Version]
- Storm, A.J.; Chen, J.H.; Ling, X.S.; Zandbergen, H.W.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2003, 2, 537–540. [Google Scholar] [CrossRef]
- Kwok, H.; Briggs, K.; Tabard-Cossa, V. Nanopore Fabrication by Controlled Dielectric Breakdown. PLoS ONE 2014, 9, e92880. [Google Scholar]
- Briggs, K.; Charron, M.; Kwok, H.; Le, T.; Chahal, S.; Bustamante, J.; Waugh, M.; Tabard-Cossa, V. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology 2015, 26, 8. [Google Scholar] [CrossRef]
- Waugh, M.; Briggs, K.; Gunn, D.; Gibeault, M.; King, S.; Ingram, Q.; Jimenez, A.M.; Berryman, S.; Lomovtsev, D.; Andrzejewski, L.; et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat. Protoc. 2020, 15, 122–143. [Google Scholar] [CrossRef]
- Roshan, K.A.; Tang, Z.; Guan, W. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore. Nanotechnology 2019, 30, 095502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Lee, C.; Park, S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsyst. Nanoeng. 2019, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Yanagi, I.; Matsui, K.; Yokoi, T.; Takeda, K.-I. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction. Sci. Rep. 2016, 6, 31324. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Maitra, R.; Pedrotti, K.D.; Dunbar, W.B. A Patch-Clamp ASIC for Nanopore-Based DNA Analysis. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, S.W.; Grosberg, A.; Rabin, Y.; Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 2011, 22, 315101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 91st ed.; Taylor & Francis Group: London, UK, 2010. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Oh, Y.; Choi, H.; Kim, J. Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications. Sensors 2022, 22, 1895. https://doi.org/10.3390/s22051895
Hong J, Oh Y, Choi H, Kim J. Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications. Sensors. 2022; 22(5):1895. https://doi.org/10.3390/s22051895
Chicago/Turabian StyleHong, Jonggi, Yeonji Oh, Hojong Choi, and Jungsuk Kim. 2022. "Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications" Sensors 22, no. 5: 1895. https://doi.org/10.3390/s22051895
APA StyleHong, J., Oh, Y., Choi, H., & Kim, J. (2022). Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications. Sensors, 22(5), 1895. https://doi.org/10.3390/s22051895