Evaluation of Acoustic Noise Level and Impulsiveness Inside Vehicles in Different Traffic Conditions
Abstract
:1. Introduction
- Acquiring an additional 254 noise samples, which were collected in a different vehicle and a different time of the year from our previous work [3];
- Validating our setup using a sound pressure level meter to verify the power levels measured;
- Improving the statistical evaluation of the selected variables, examining which of them have more influence in the noise power levels inside, comparing the results between both measurement sets, and providing a more in-depth analysis of the effect of the car’s windows;
- Evaluating the degree of impulsiveness of the interior noise and comparing the AWGN and alpha-stable noise models;
- Analyzing the window size for the estimation of alpha-stable distribution parameters.
2. Related Works
3. Measurement Campaigns and Setup
3.1. Measurement Campaigns
- Car horns;
- Potholes or unevenness in the road;
- Speed bumps;
- Sudden braking or acceleration due to traffic, intersections, or traffic lights;
- Excessive noise from heavy vehicles;
- Noise from multiple motorcycles passing close by;
- Music and advertisements from other cars or establishments on the street;
- People talking around the vehicle;
- Noise from animals such as dogs, birds, and cicadas;
- Ambulance and police car sirens;
- Unidentified noise sources and other events.
3.2. Controlled and Uncontrolled Variables
3.3. Measurement Setup
4. Statistical Methods
4.1. Average Power
4.2. Regression Analysis
4.3. Impulsive Noise and Alpha-Stable Model
- , the characteristic exponent, satisfying . It is the main shape parameter of the distribution, describing the tails of the distribution. Smaller values of indicate a heavier tail, meaning a higher probability of extreme events. Conversely, values approaching 2 indicate a behavior closer to that of a Gaussian distribution. When , it is equivalent to a Gaussian distribution;
- , the skewness parameter, is limited to . It controls the skewness of the distribution. For , the distribution is symmetric. If , then the distribution is right-skewed. If , then the distribution is left-skewed;
- , the scale parameter, which is always a positive number (). This parameter behaves similarly to the variance in the Gaussian distribution. It determines the dispersion around the location parameter. It should be noted that the variance of an alpha-stable variable is only defined for ;
- , the location parameter, which shifts the distribution to the left or to the right by an amount .
5. Results and Discussions
5.1. Noise Power Level Analysis
5.1.1. Traffic Analysis
5.1.2. Window Analysis
5.1.3. Speed Analysis
5.1.4. Multiple Variable Analysis
5.2. Impulsiveness Evaluation
5.2.1. Traffic Analysis
5.2.2. Window Analysis
5.2.3. RMSE Evaluation
5.3. Considerations about Window Size for Estimation
6. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kinsella, B.; Mutchler, A. In-Car Voice Assistant Consumer Report; Technical report; Voicebot: Washington, DC, USA, 2019. [Google Scholar]
- Chen, S.; Gu, F.; Liang, C.; Meng, H. Review on Active Noise Control Technology for α-Stable Distribution Impulsive Noise. Circ. Syst. Signal Process. 2021, 41, 956–993. [Google Scholar] [CrossRef]
- Flor, D.; Pena, D.; Pena, L.; de Sousa, V.A.; Martins, A. Characterization of Noise Level Inside a Vehicle under Different Conditions. Sensors 2020, 20, 2471. [Google Scholar] [CrossRef] [PubMed]
- Pena, D.; Sousa, V.; Pena, L.; de Lucena Flor, D. Database of Acoustic Noise Power Levels in a Vehicle Interior under Different Conditions. Available online: https://doi.org/10.6084/m9.figshare.11370885.v1 (accessed on 1 February 2022).
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.E.; Shev, A.; Paksarian, D.; Merikangas, K.R.; Mennitt, D.J.; James, P.; Casey, J.A. Environmental noise and sleep and mental health outcomes in a nationally representative sample of urban US adolescents. Environ. Epidemiol. 2019, 3, e056. [Google Scholar] [CrossRef]
- Sygna, K.; Aasvang, G.M.; Aamodt, G.; Oftedal, B.; Krog, N.H. Road traffic noise, sleep and mental health. Environ. Res. 2014, 131, 17–24. [Google Scholar] [CrossRef]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient Noise and Cognitive Processes among Primary Schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Roswall, N.; Raaschou-Nielsen, O.; Ketzel, M.; Gammelmark, A.; Overvad, K.; Olsen, A.; Sørensen, M. Long-term residential road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction—A Danish cohort study. Environ. Res. 2017, 156, 80–86. [Google Scholar] [CrossRef]
- Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and ischemic heart disease: A meta-analysis. Environ. Res. 2015, 138, 372–380. [Google Scholar] [CrossRef]
- Roswall, N.; Raaschou-Nielsen, O.; Jensen, S.S.; Tjønneland, A.; Sørensen, M. Long-term exposure to residential railway and road traffic noise and risk for diabetes in a Danish cohort. Environ. Res. 2018, 160, 292–297. [Google Scholar] [CrossRef]
- Huang, H.; Wu, J.; Huang, X.; Yang, M.; Ding, W. A generalized inverse cascade method to identify and optimize vehicle interior noise sources. J. Sound Vib. 2020, 467, 115062. [Google Scholar] [CrossRef]
- Numerical and experimental-based framework for vibro-acoustic coupling investigation on a vehicle door in the slamming event. Mech. Syst. Signal Process. 2021, 158, 107759. [CrossRef]
- Horne, D.; Jashami, H.; Monsere, C.M.; Kothuri, S.; Hurwitz, D.S. Evaluating In-Vehicle Sound and Vibration during Incursions on Sinusoidal Rumble Strips. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 154–166. [Google Scholar] [CrossRef]
- Liu, N.; Sun, Y.; Wang, Y.; Sun, P.; Li, W.; Guo, H. Mechanism of interior noise generation in high-speed vehicle based on anti-noise operational transfer path analysis. J. Automob. Eng. 2021, 235, 273–287. [Google Scholar] [CrossRef]
- Lu, M.H.; Jen, M.U.; de Klerk, D. Case study: Separating source contributions of vehicle interior noise by operational transfer path analysis. Noise Control. Eng. J. 2021, 69, 39–52. [Google Scholar] [CrossRef]
- Deng, J.; Sun, J.; Li, A. Analysis and Optimization of Vehicle Interior Noise Caused by Tire Excitation. In Proceedings of China SAE Congress 2018: Selected Papers; (China SAE); Springer: Singapore, 2020; pp. 723–735. [Google Scholar]
- Almalkawi, I.T.; Guerrero Zapata, M.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless Multimedia Sensor Networks: Current Trends and Future Directions. Sensors 2010, 10, 6662–6717. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ma, J.J.; Ding, L.; Bi, D.W. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks. Sensors 2007, 7, 2779–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennehag, U.; Forsstrom, S.; Fiordigigli, F. Low Delay Video Streaming on the Internet of Things Using Raspberry Pi. Electronics 2016, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT Solution for Smart Cities’ Pollution Monitoring and the Security Challenges. Sensors 2019, 19, 3401. [Google Scholar] [CrossRef] [Green Version]
- Kordov, K. A Novel Audio Encryption Algorithm with Permutation-Substitution Architecture. Electronics 2019, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Han, Z.; Fang, L.; Ma, Z. Tell the Device Password: Smart Device Wi-Fi Connection Based on Audio Waves. Sensors 2019, 19, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, T.; Jameel, A.; Stumpfle, M.; Haddadi, A. Hybrid in-car speech recognition for mobile multimedia applications. In Proceedings of the 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363), Houston, TX, USA, 16–20 May 1999; Volume 3. [Google Scholar] [CrossRef]
- Higuchi, M.; Shinohara, S.; Nakamura, M.; Mitsuyoshi, S.; Tokuno, S.; Omiya, Y.; Hagiwara, N.; Takano, T. An effect of noise on mental health indicator using voice. In Proceedings of the 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 24–26 November 2017. [Google Scholar] [CrossRef]
- Khan, S.; Akmal, H.; Ali, I.; Naeem, N. Efficient and unique learning of in-car voice control for engineering education. In Proceedings of the 2017 International Multi-topic Conference (INMIC), Lahore, Pakistan, 24–26 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tremoulet, P.D.; Seacrist, T.; Ward McIntosh, C.; Loeb, H.; DiPietro, A.; Tushak, S. Transporting Children in Autonomous Vehicles: An Exploratory Study. Hum. Factors J. Hum. Factors Ergon. Soc. 2019, 62, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C. Multimedia for Autonomous Driving. IEEE Multimed. 2019, 26, 5–8. [Google Scholar] [CrossRef]
- Doleschal, F.; Rottengruber, H.; Verhey, J.L. Influence parameters on the perceived magnitude of tonal content of electric vehicle interior sounds. Appl. Acoust. 2021, 181, 108155. [Google Scholar] [CrossRef]
- Liao, X.; Zheng, S. Quantification and characterization of the role of subjective preferences on vehicle acceleration sound quality. Mech. Syst. Signal Process. 2020, 138, 106549. [Google Scholar] [CrossRef]
- Swart, D.; Bekker, A. The relationship between consumer satisfaction and psychoacoustics of electric vehicle signature sound. Appl. Acoust. 2019, 145, 167–175. [Google Scholar] [CrossRef]
- Huang, H.B.; Huang, X.R.; Yang, M.L.; Lim, T.C.; Ding, W.P. Identification of vehicle interior noise sources based on wavelet transform and partial coherence analysis. Mech. Syst. Signal Process. 2018, 109, 247–267. [Google Scholar] [CrossRef]
- Jung, W.; Elliott, S.J.; Cheer, J. Local active control of road noise inside a vehicle. Mech. Syst. Signal Process. 2019, 121, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Vanherpe, F.; Baresch, D.; Lafon, P.; Bordji, M. Wavenumber-Frequency Analysis of the Wall Pressure Fluctuations in the Wake of a Car Side Mirror. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon, 5–8 June 2011. [Google Scholar] [CrossRef]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Pizzo, A.D.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226. [Google Scholar] [CrossRef]
- Praticò, F.G.; Anfosso-Lédée, F. Trends and Issues in Mitigating Traffic Noise through Quiet Pavements. Procedia-Soc. Behav. Sci. 2012, 53, 203–212. [Google Scholar] [CrossRef]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Bianco, F.; Chetoni, M. Performance Assessment of Low-Noise Road Surfaces in the Leopoldo Project: Comparison and Validation of Different Measurement Methods. Coatings 2015, 5, 3–25. [Google Scholar] [CrossRef]
- Shin, T.J.; Park, D.C.; Lee, S.K. Objective evaluation of door-closing sound quality based on physiological acoustics. Int. J. Automot. Technol. 2013, 14, 133–141. [Google Scholar] [CrossRef]
- Parizet, E.; Guyader, E.; Nosulenko, V. Analysis of car door closing sound quality. Appl. Acoust. 2008, 69, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Qiao, F.; Yu, L.; Shi, J. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation. J. Air Waste Manag. Assoc. 2018, 68, 576–587. [Google Scholar] [CrossRef]
- Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl. Acoust. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Morgan, C.D.; Naganarayana, B.P.; Shankar, S. Comparative Evaluation of Seat Belt Retractor Websense Mechanism Rattle Noise. SAE Trans. 2004, 113, 127–134. [Google Scholar]
- Yoshida, J.; Inoue, A. Road & wind noise contribution separation using only interior noise having multiple sound sources—Accuracy improvement and permutation solution. Mech. Eng. J. 2017, 4, 1700165. [Google Scholar] [CrossRef] [Green Version]
- Talay, E.; Altinisik, A. The effect of door structural stiffness and flexural components to the interior wind noise at elevated vehicle speeds. Appl. Acoust. 2019, 148, 86–96. [Google Scholar] [CrossRef]
- Volandri, G.; Di Puccio, F.; Forte, P.; Mattei, L. Psychoacoustic analysis of power windows sounds: Correlation between subjective and objective evaluations. Appl. Acoust. 2018, 134, 160–170. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, G.; Xing, Y. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network. Mech. Syst. Signal Process. 2014, 45, 255–266. [Google Scholar] [CrossRef]
- Pietila, G.; Lim, T.C. Intelligent systems approaches to product sound quality evaluations—A review. Appl. Acoust. 2012, 73, 987–1002. [Google Scholar] [CrossRef]
- Huang, X.; Huang, H.; Wu, J.; Yang, M.; Ding, W. Sound quality prediction and improving of vehicle interior noise based on deep convolutional neural networks. Expert Syst. Appl. 2020, 160, 113657. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, Y.J. Evaluation Index for Sporty Engine Sound Reflecting Evaluators’ Tastes, Developed Using K-means Cluster Analysis. Int. J. Automot. Technol. 2020, 21, 1379–1389. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Feng, T.; Ju, J.; Wang, X. Acoustic behavior prediction for low-frequency sound quality based on finite element method and artificial neural network. Appl. Acoust. 2017, 122, 62–71. [Google Scholar] [CrossRef]
- Puyana Romero, V.; Maffei, L.; Brambilla, G.; Ciaburro, G. Acoustic, Visual and Spatial Indicators for the Description of the Soundscape of Waterfront Areas with and without Road Traffic Flow. Int. J. Environ. Res. Public Health 2016, 13, 934. [Google Scholar] [CrossRef]
- Bravo-Moncayo, L.; Lucio-Naranjo, J.; Chávez, M.; Pavón-García, I.; Garzón, C. A machine learning approach for traffic-noise annoyance assessment. Appl. Acoust. 2019, 156, 262–270. [Google Scholar] [CrossRef]
- Yin, X.; Fallah-Shorshani, M.; McConnell, R.; Fruin, S.; Franklin, M. Predicting Fine Spatial Scale Traffic Noise Using Mobile Measurements and Machine Learning. Environ. Sci. Technol. 2020, 54, 12860–12869. [Google Scholar] [CrossRef]
- Huang, H.; Wu, J.; Lim, T.C.; Yang, M.; Ding, W. Pure electric vehicle nonstationary interior sound quality prediction based on deep CNNs with an adaptable learning rate tree. Mech. Syst. Signal Process. 2021, 148, 107170. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, E.; Xue, H.; Tang, Q.; Wang, G.; Zhou, B. Analysis on vehicle sound quality via deep belief network and optimization of exhaust system based on structure-SQE model. Appl. Acoust. 2021, 171, 107603. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P.; Liu, H.; Yang, J.; Liu, S.; Xue, L. Objective sound quality evaluation for the vehicle interior noise based on responses of the basilar membrane in the human ear. Appl. Acoust. 2021, 172, 107619. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Zhang, Q.; Wang, X.; Yin, X.; Hou, H. An Efficient Method for Prediction of the Flow-induced Vehicle Interior Noise. J. Phys. Conf. Ser. 2020, 1650, 022114. [Google Scholar] [CrossRef]
- Hägglund, K. Symmetric alpha-Stable Adapted Demodulation and Parameter Estimation. Master’s Thesis, Lulea University of Technology, Lulea, Sweden, 2018. [Google Scholar]
- Nikias, C.; Shao, M. Recent Advances in Signal Processing with α-Stable Distributions. IFAC Proc. Vol. 1994, 27, 65–70. [Google Scholar] [CrossRef]
- Yardimci, Y.; Cetin, A.; Cadzow, J. Robust direction-of-arrival estimation in non-Gaussian noise. IEEE Trans. Signal Process. 1998, 46, 1443–1451. [Google Scholar] [CrossRef]
- Georgiou, P.G. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Trans. Multimed. 1999, 1, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, P.; Kyriakakis, C. Robust maximum likelihood source localization: The case for sub-Gaussian versus Gaussian. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 1470–1480. [Google Scholar] [CrossRef]
- Guo, M.; Sun, Y.; Dai, J.; Chang, C. Robust DOA estimation for burst impulsive noise. Digit. Signal Process. 2021, 114, 103059. [Google Scholar] [CrossRef]
- Figueredo, M.G.F.; Pena, D.d.S.; Filho, C.A.d.L.; Dória, M.F.d.S.; Martins, A.d.M.; Sousa Jr, V.A.d. Análise de Desempenho de Métodos de DOA Sujeitos a Modelos de Ruído Impulsivo com Misturas Gaussinas. Os impactos de estudos voltados para as ciências exatas. Braz. J. 2020, 1, 391–419. [Google Scholar] [CrossRef]
- Figueredo, M.G.F.; Pena, D.d.S.; Lima Filho, C.A.; Dória, M.F.d.S.; Martins, A.d.M.; Sousa, V.A., Jr. Uma ferramenta de prototipagem para análise de técnicas de estimação de direção de chegada. Braz. J. Dev. 2020, 6, 28331–28342. [Google Scholar] [CrossRef]
- Pena, D.; Lima, A.; de Sousa Jr, V.; Silveira, L.; Martins, A. Robust time delay estimation based on non-Gaussian impulsive acoustic channel. J. Commun. Inf. Syst. 2020, 35, 86–89. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, R.; Zhou, Y.; Jing, X.; Truong, T.K. Speech Denoising Using Transform Domains in the Presence of Impulsive and Gaussian Noises. IEEE Access 2017, 5, 21193–21203. [Google Scholar] [CrossRef]
- Sasaoka, N.; Akamatsu, E.; Kawamara, A.; Hayasaka, N.; ITOH, Y. 4th Order Moment-Based Linear Prediction for Estimating Ringing Sound of Impulsive Noise in Speech Enhancement. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2020, E103.A, 1248–1251. [Google Scholar] [CrossRef]
- Rajala, V.; Hongisto, V. Annoyance penalty of impulsive noise—The effect of impulse onset. Build. Environ. 2020, 168, 106539. [Google Scholar] [CrossRef]
- Schaffeld, T.; Schnitzler, J.G.; Ruser, A.; Woelfing, B.; Baltzer, J.; Siebert, U. Effects of multiple exposures to pile driving noise on harbor porpoise hearing during simulated flights—An evaluation tool. J. Acoust. Soc. Am. 2020, 147, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.P. Univariate Stable Distributions; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Nolan, J.P. Bibliography on Stable Distributions, Processes and Related Topics. 2006. Available online: https://edspace.american.edu/jpnolan/wp-content/uploads/sites/1720/2021/07/StableBibliography.pdf (accessed on 9 September 2021).
- Pokorný, P. Determining Traffic Levels in Cities Using Google Maps. In Proceedings of the 2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Corfu, Greece, 24–27 August 2017; pp. 144–147. [Google Scholar] [CrossRef]
- Pena, D.; Lima, C.; Dória, M.; Pena, L.; Martins, A.V., Jr. Acoustic Impulsive Noise Based on Non-Gaussian Models: An Experimental Evaluation. Sensors 2019, 19, 2827. [Google Scholar] [CrossRef] [Green Version]
- Respeaker. ReSpeaker 4 Mic Array for Raspberry Pi. 2019. Available online: https://respeaker.io/4_mic_array/ (accessed on 15 March 2021).
- Stigler, S.M. Gauss and the Invention of Least Squares. Ann. Stat. 1981, 9, 465–474. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Menard, S. Coefficients of Determination for Multiple Logistic Regression Analysis. Am. Stat. 2000, 54, 17–24. [Google Scholar] [CrossRef]
- Bai, L.; Tucci, M.; Barmada, S.; Raugi, M.; Zheng, T. Impulsive Noise Characterization in Narrowband Power Line Communication. Energies 2018, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Landa, I.; Díez-Bravo, A.; Velez, M.; Arrinda, A. Influence of impulsive noise from lifts on orthogonal frequency-division multiplexing digital radio mondiale signals. IET Commun. 2020, 14, 111–116. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaddoum, G.; Agba, B.L. Performance Analysis of Distributed Wireless Sensor Networks for Gaussian Source Estimation in the Presence of Impulsive Noise. IEEE Signal Process. Lett. 2018, 25, 803–807. [Google Scholar] [CrossRef]
- Shao, M.; Nikias, C. Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE 1993, 81, 986–1010. [Google Scholar] [CrossRef]
- Belkacemi, H.; Marcos, S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter. Signal Process. 2007, 87, 1547–1558. [Google Scholar] [CrossRef]
- Scharf, L.L. Statistical Signal Processing-Detection, Estimation and Time Series Analysis, 5th ed.; Addison-Wesley Publishing Company: Boston, MA, USA, 1991. [Google Scholar]
- Nolan, J.P. Numerical calculation of stable densities and distribution functions. Commun. Stat. Stoch. Model. 1997, 13, 759–774. [Google Scholar] [CrossRef]
- Nolan, J.P. Maximum Likelihood Estimation and Diagnostics for Stable Distributions. In Lévy Processes: Theory and Applications; Barndorff-Nielsen, O.E., Resnick, S.I., Mikosch, T., Eds.; Birkhäuser Boston: Boston, MA, USA, 2001; pp. 379–400. [Google Scholar]
- McCulloch, J.H. Simple consistent estimators of stable distribution parameters. Commun. Stat.-Simul. Comput. 1986, 15, 1109–1136. [Google Scholar] [CrossRef]
Traffic Condition (Color) | Speed Interval | Description |
---|---|---|
Black | 0 | Indicates extremely slow traffic. |
Red | <20 km/h | Traffic moves slowly. |
Orange | >20 km/h and <40 km/h | Intermediate traffic flow. |
Green | >40 km/h | Indicates that traffic is fast. |
Variable | Possible Values | Notes |
---|---|---|
Windows positions | Open; Closed | All four windows on the same position. |
Traffic | Black; Red; Orange; Green | Speed interval (see Table 1). |
Speed | 0–80 km/h | Maximum value during measurement interval. |
Specification | Value |
---|---|
Microphone channels | 4 |
ADC model | AC108 |
Digital output | I2S/TDM |
System clock | 19.2 MHz |
Sampling rate | 48 kHz |
Specification | Value |
---|---|
Measurement range | 30∼130 dB |
Resolution | 0.1 dB |
Frequency response | 31.5∼8.5 kHz |
Precision (94 dB/1 kHz) | ±1.5 dB |
Data logger capacity | 4422 samples |
Window | Traffic | Total | |||||
---|---|---|---|---|---|---|---|
Open | Closed | Black | Red | Orange | Green | ||
Number of samples for the first campaign | 95 | 99 | 47 | 51 | 51 | 45 | 194 |
Number of samples for the second campaign | 127 | 127 | 45 | 80 | 64 | 65 | 254 |
Encoding | 1 | 0 | 0 | 1 | 2 | 3 | - |
Regression Coefficients | Goodness of Fit | |||||
---|---|---|---|---|---|---|
MSE | R² | F-Value | Prob (F) | |||
1st campaign | 4.4942 (4.216–4.772) | 0.0766 (0.070–0.083) | 0.337 | 0.72 | 498.26 | 3.03 × 10−55 |
2nd campaign | 4.1012 (3.841–4.361) | 0.0712 (0.064–0.078) | 0.431 | 0.61 | 401.96 | 4.19 × 10−54 |
Regression Coefficients | Goodness of Fit | ||
---|---|---|---|
Pseudo-R² | |||
1st campaign | 1.2482 (0.254–2.242) | 0.0329 (0.009–0.057) | 0.0274 |
2nd campaign | 1.6167 (0.771–2.463) | 0.0458 (0.023–0.069 | 0.04704 |
Regression Coefficients | Goodness of Fit | |||||
---|---|---|---|---|---|---|
MSE | R² | F-Value | Prob (F) | |||
1st campaign | 98.37 (91.23–105.51) | 1.77 (1.60–1.94) | 221.65 | 0.68 | 404.92 | 3.56 × 10−49 |
2nd campaign | 86.33 (79.81–92.85) | 1.63 (1.46–1.81) | 270.76 | 0.57 | 336.34 | 2.66 × 10−48 |
Regression Coefficients | Goodness of Fit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MSE | R² | F-Value | Prob (F) | |||||||
1st campaign | −55.72 | 7.44 | 13.56 | 16.45 | 4.492 | 0.170 | 35.63 | 0.766 | 123.01 | 2.50 × 10−57 |
2nd campaign | −52.69 | 6.09 | 12.61 | 9.92 | 5.87 | 0.27 | 39.59 | 0.713 | 123.086 | 4.21 × 10−65 |
First Campaign | Second Campaign | |
---|---|---|
Proportion of samples with a smaller RSME for the alpha-stable model | 71.13% | 61.81% |
Greatest difference in RSME when alpha-stable model performs better | 1.1606 | 0.6124 |
Greatest difference in RSME when Gaussian model performs better | 0.0060 | 0.0060 |
Average RMSE for alpha-stable model | 0.3136 | 0.1930 |
Average RMSE for Gaussian model | 0.3660 | 0.2064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flor, D.; Pena, D.; Oliveira, H.L.; Pena, L.; de Sousa, V.A., Jr.; Martins, A. Evaluation of Acoustic Noise Level and Impulsiveness Inside Vehicles in Different Traffic Conditions. Sensors 2022, 22, 1946. https://doi.org/10.3390/s22051946
Flor D, Pena D, Oliveira HL, Pena L, de Sousa VA Jr., Martins A. Evaluation of Acoustic Noise Level and Impulsiveness Inside Vehicles in Different Traffic Conditions. Sensors. 2022; 22(5):1946. https://doi.org/10.3390/s22051946
Chicago/Turabian StyleFlor, Daniel, Danilo Pena, Hyago Lucas Oliveira, Luan Pena, Vicente A. de Sousa, Jr., and Allan Martins. 2022. "Evaluation of Acoustic Noise Level and Impulsiveness Inside Vehicles in Different Traffic Conditions" Sensors 22, no. 5: 1946. https://doi.org/10.3390/s22051946
APA StyleFlor, D., Pena, D., Oliveira, H. L., Pena, L., de Sousa, V. A., Jr., & Martins, A. (2022). Evaluation of Acoustic Noise Level and Impulsiveness Inside Vehicles in Different Traffic Conditions. Sensors, 22(5), 1946. https://doi.org/10.3390/s22051946