Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps
Abstract
:1. Introduction
2. Proposed Defect Diagnosis Methodology
2.1. Order Maps
2.1.1. Tachometer Signal Processing and rpm Extraction
2.1.2. Synchronous Resampling in the Order Domain
2.1.3. Short-Time Fourier Transform of Resampled Signal in the Order Domain
2.2. Convolutional Neural Network
3. Experimental Setup
3.1. Case Study-1
3.2. Case Study-2
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, J.Q.; Zhu, L.C.; Li, Q.F.; Liu, D.P.; Chen, M.Y. Imbalanced Fault Diagnosis of Rotating Machinery Based on Deep Generative Adversarial Networks with Gradient Penalty. Processes 2021, 9, 1751. [Google Scholar] [CrossRef]
- Kiral, Z.; Hira, K. Simulation and analysis of vibration signals generated by rolling element bearing with defects. Tribol. Int. 2003, 36, 667–678. [Google Scholar] [CrossRef]
- Orhan, S.; Nizami, A.; Celik, V. Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies. Ndt E Int. 2006, 39, 293–298. [Google Scholar] [CrossRef]
- Chang, C.W.; Lee, H.W.; Liu, C.H. A review of artificial intelligence algorithms used for smart machine tools. Inventions 2018, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Chow, M.Y.; Yodyium, T.; James, C.H. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Samanta, B.; Al-Balushi, K.R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech. Syst. Signal Processing 2003, 17, 317–328. [Google Scholar] [CrossRef]
- Malhi, A.; Gao, R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 2004, 53, 1517–1525. [Google Scholar] [CrossRef]
- Su, H.; Chong, K.T. Induction machine condition monitoring using neural network modeling. IEEE Trans. Ind. Electron. 2007, 54, 241–249. [Google Scholar] [CrossRef]
- Seryasat, O.R.; Haddadnia, J.; Arabnia, Y.; Zeinali, M.; Abooalizadeh, Z.; Taherkhani, A.; Tabrizy, S.; Maleki, F. Intelligent fault detection of ball-bearings using artificial neural networks and support-vector machine. Life Sci. 2012, 9, 4186–4189. [Google Scholar]
- Mao, W.; He, J.; Yuan, L.; Yan, Y.G. Bearing fault diagnosis with auto-encoder extreme learning machine: A comparative study. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2017, 231, 1560–1578. [Google Scholar] [CrossRef]
- Gan, M.; Cong, W. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Processing 2016, 72, 92–104. [Google Scholar] [CrossRef]
- Tayyab, S.; Muhammad, E.; Asghar, P.P.; Steven, C. Intelligent fault diagnosis of rotating machine elements using machine learning through optimal features extraction and selection. Procedia Manuf. 2020, 72, 266–273. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Shen, H.H.; Zhao, J.; Liu, X.C.; Xiong, X.L. Degradation state recognition of rolling bearing based on K-means and CNN algorithm. Shock. Vib. 2019, 2019, 8471732. [Google Scholar] [CrossRef]
- Gunerkar, R.S.; Jalan, A.K.; Belgamwar, S.U. Fault diagnosis of rolling element bearing based on artificial neural network. J. Mech. Sci. Technol. 2019, 33, 505–511. [Google Scholar] [CrossRef]
- Patel, J.P.; Upadhyay, S.H. Comparison between artificial neural network and support vector method for a fault diagnostics in rolling element bearings. Procedia Eng. 2016, 144, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Jing, T.; Morillo, C.; Michael, H.A.; Pecht, M. Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis. IEEE Trans. Ind. Electron. 2015, 63, 1793–1803. [Google Scholar]
- Zhang, R.X.; Fang, Y.; Zhou, Z.F. Fault diagnosis of rolling bearing based on k-svd dictionary learning algorithm and BP Neural Network. In Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence, Shanghai, China, 20 September 2019; pp. 341–345. [Google Scholar] [CrossRef]
- Muhammad, M.; Gondal, I.; Wilson, C. Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 2014, 62, 494–502. [Google Scholar] [CrossRef]
- Khan, S.A.; Kim, J.M. Automated bearing fault diagnosis using 2D analysis of vibration acceleration signals under variable speed conditions. Shock. Vib. 2016, 2016, 8729572. [Google Scholar] [CrossRef] [Green Version]
- Ankush, M.; Goyal, D.; Choudhary, A.; Pabla, B.S.; Belghith, S. Machine Learning-Based Fault Diagnosis of Self-Aligning Bearings for Rotating Machinery Using Infrared Thermography. Math. Probl. Eng. 2021, 2021, 9947300. [Google Scholar] [CrossRef]
- Wu, C.X.; Chen, T.F.; Jiang, R. Bearing fault diagnosis via kernel matrix construction based support vector machine. J. Vibroengineering 2017, 19, 3445–3461. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.G.; Yang, B.; Jiang, X.W.; Feng, J.; Li, N.P.; Asoke, K.N. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Processing 2019, 138, 106587. [Google Scholar] [CrossRef]
- Gu, J.X.; Wang, Z.H.; Kuen, J.; Ma, L.Y.; Shahroudy, A.; Bing, S.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.N.; Wang, X.Q.; Yang, C.C.; Zhang, T. A novel feature extraction method using deep neural network for rolling bearing fault diagnosis. In Proceedings of the 27th Chinese Control and Decision Conference, Qingdao, China, 23–25 May 2015; pp. 2427–2431. [Google Scholar]
- Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Processing 2016, 72, 303–315. [Google Scholar] [CrossRef]
- Liu, H.M.; Li, L.F.; Ma, J. Rolling bearing fault diagnosis based on STFT-deep learning and sound signals. Shock. Vib. 2016, 2016, 6127479. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Gao, H.; Huang, H.; He, X.; Li, S. Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring. Shock. Vib. 2016, 2016, 4632562. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Liu, Y.; Yang, D. Bearing fault diagnosis based on deep belief network and multisensor information fusion. Shock. Vib. 2016, 2016, 9306205. [Google Scholar] [CrossRef] [Green Version]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [Google Scholar] [CrossRef]
- Ding, X.; He, Q. Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis. IEEE Trans. Instrum. Meas. 2017, 66, 1926–1935. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ding, Q. Deep residual learning-based fault diagnosis method for rotating machinery. ISA Trans. 2019, 95, 295–305. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Arellano-Espitia, F.; Delgado-Prieto, M.; Osornio-Rios, R.A. Diagnosis Methodology Based on Deep Feature Learning for Fault Identification in Metallic, Hybrid and Ceramic Bearings. Sensors 2021, 21, 5832. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, C.; Zhang, G. Rolling Bearing Fault Diagnosis Based on Deep Learning and Autoencoder Information Fusion. Symmetry 2022, 14, 13. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion. IEEE Trans. Instrum. Meas. 2019, 69, 3325–3333. [Google Scholar] [CrossRef]
- Eren, L. Bearing fault detection by one-dimensional convolutional neural networks. Math. Probl. Eng. 2017, 2017, 8617315. [Google Scholar] [CrossRef] [Green Version]
- Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Signal Processing Syst. 2019, 91, 179–189. [Google Scholar] [CrossRef]
- Pham, M.-T.; Kim, J.-M.; Kim, C.-H. 2D CNN-Based Multi-Output Diagnosis for Compound Bearing Faults under Variable Rotational Speeds. Machines 2021, 9, 199. [Google Scholar] [CrossRef]
- Pham, M.T.; Kim, J.-M.; Kim, C.H. Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram. Appl. Sci. 2020, 10, 6385. [Google Scholar] [CrossRef]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock. Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef]
- Hoang, D.T.; Tran, X.T.; Van, M.; Kang, H.J. A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis. Sensors 2021, 21, 244. [Google Scholar] [CrossRef]
- Hoang, D.-T.; Kang, H.-J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 2019, 53, 42–50. [Google Scholar] [CrossRef]
- Tayyab, S.M.; Chatterton, S.; Pennacchi, P. Fault detection and severity level identification of spiral bevel gears under different operating conditions using artificial intelligence techniques. Machines 2021, 9, 173. [Google Scholar] [CrossRef]
- Wei, D.; Wang, K.; Heyns, S.; Zuo, M.J. Convolutional neural networks for fault diagnosis using rotating speed normalized vibration. In Proceedings of the International Conference on Condition Monitoring of Machinery in Non-Stationary Operation, Santander, Spain, 20–22 June 2018; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Zhang, R.; Tao, H.; Wu, L.; Guan, Y. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions. IEEE Access 2017, 5, 14347–14357. [Google Scholar] [CrossRef]
- Shen, F.; Chen, C.; Yan, R.; Gao, R.X. Bearing fault diagnosis based on SVD feature extraction and transfer learning classification. In Proceedings of the 2015 Prognostics and System Health Management Conference (PHM), Beijing, China, 21–23 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, C.; Shen, F.; Yan, R.Q. Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis. Chin. J. Sci. Instrum. 2017, 38, 33–40. [Google Scholar]
- Chunfeng, W.; Zheng, L.; Jun, Z.; Wei, W. Heterogeneous transfer learning based on stack sparse auto-encoders for fault diagnosis. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 4277–4281. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, B.; Ma, G.; Wu, D.; Yuan, Y. Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomputing 2020, 409, 35–45. [Google Scholar] [CrossRef]
- Bruand, G.; Chatelain, F.; Granjon, P.; Martin, N.; Duret, C. Reconstructing shaft orbit using angle measurement to detect bearing faults. Mech. Syst. Signal Processing 2020, 139, 106561. [Google Scholar] [CrossRef] [Green Version]
- Mishra, C.; Samantaray, A.K.; Chakraborty, G. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate. Mech. Syst. Signal Processing 2016, 72, 206–222. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, T.-W.; Na, J.; Fung, R.-F. Envelope order tracking for fault detection in rolling element bearings. J. Sound Vib. 2012, 331, 5644–5654. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Cheng, J.; Zhang, K. A fault diagnosis approach for roller bearing based on VPMCD under variable speed condition. Measurement 2013, 46, 2306–2312. [Google Scholar] [CrossRef]
- Farhat, M.; Chiementin, X.; Chaari, F.; Bolaers, F.; Haddar, M. Order-Based Identification of Bearing Defects under Variable Speed Condition. Appl. Sci. 2021, 11, 3962. [Google Scholar] [CrossRef]
- Appana, D.K.; Prosvirin, A.; Kim, J.-M. Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks. Soft Comput. 2018, 22, 6719–6729. [Google Scholar] [CrossRef]
- Xu, L.; Chatterton, S.; Pennacchi, P.; Liu, C. A Tacholess Order Tracking Method Based on Inverse Short Time Fourier Transform and Singular Value Decomposition for Bearing Fault Diagnosis. Sensors 2020, 20, 6924. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, S.; Zhong, M.; Lin, Z. Order spectrum analysis for bearing fault detection via joint application of synchrosqueezing transform and multiscale chirplet path pursuit. Shock. Vib. 2016, 2016, 2976389. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Guo, Y.; Chi, Y.L.; Qin, S.R. Order tracking based on robust peak search instantaneous frequency estimation. In Proceedings of the International Symposium on Instrumentation Science and Technology, Harbin, China, 8–12 August 2006; Journal of Physics: Conference Series. IOP Publishing: Bristol, UK, 2006; Volume 48, p. 091. [Google Scholar] [CrossRef]
- Blough, J.R. Improving the Analysis of Operating Data on Rotating Automotive Components. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 1998. [Google Scholar]
- Brandt, A. Rotating Machinery Analysis. In Noise and Vibration Analysis: Signal Analysis and Experimental Procedures; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Gao, S.; Chatterton, S.; Pennacchi, P.; Chu, F. Behaviour of an angular contact ball bearing with three-dimensional cubic-like defect: A comprehensive non-linear dynamic model for predicting vibration response. Mech. Mach. Theory 2021, 163, 104376. [Google Scholar] [CrossRef]
- Gao, S.; Chatterton, S.; Naldi, L.; Pennacchi, P. Ball bearing skidding and over-skidding in large-scale angular contact ball bearings: Nonlinear dynamic model with thermal effects and experimental results. Mech. Syst. Signal Processing 2021, 147, 107120. [Google Scholar] [CrossRef]
- Prashad, H. Solving Tribology Problems in Rotating Machines; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Han, Q.; Li, X.; Chu, F. Skidding behavior of cylindrical roller bearings under time-variable load conditions. Int. J. Mech. Sci. 2018, 135, 203–214. [Google Scholar] [CrossRef]
- Li, F.; Deng, S.; Zhang, W. Skidding Characteristics of Ball Bearings Withstanding a Frequent Oscillating Condition. Chin. J. Mech. Eng. 2021, 57, 168–178. [Google Scholar]
- Pennacchi, P.; Bruni, S.; Chatterton, S.; Borghesani, P.; Ricci, R.; Marinis, D.; Didonato, A.; Unger-Weber, F. A test rig for the condition-based maintenance application on the traction chain of very high speed trains. In Proceedings of the 9th World Congress on Railway Research, Lille, France, 22–26 May 2011; Rail Safety and Standards Board Ltd.: London, UK, 2011; pp. 1–11. [Google Scholar]
Operating Condition Number | Operating Conditions | Operating Condition Number | Operating Conditions | ||
---|---|---|---|---|---|
Speed (rpm) | Load (KN) | Speed (rpm) | Load (KN) | ||
1 | 1000 | 5 | 6 | 2000 | 15 |
2 | 1000 | 10 | 7 | 3000 | 5 |
3 | 1000 | 15 | 8 | 3000 | 10 |
4 | 2000 | 5 | 9 | 3000 | 15 |
5 | 2000 | 10 |
Class | 1 | 2 | 3 |
---|---|---|---|
Health State/Type of Fault | Normal/Healthy | Combined Defects/Multiple Defects | Outer Race Defect |
Operating Condition Number | Type of Operating Condition | Speed Range (rpm) | Time Duration |
---|---|---|---|
1 | Constant speed | 3170 | 100 s |
2 | Constant speed | 4955 | 100 s |
3 | Variable speed (acceleration) | 1000–2000 | 100 s |
4 | Variable speed (acceleration) | 3525–4125 | 100 s |
5 | Variable speed (deceleration) | 4050–2560 | 100 s |
Class | Defect Type/Condition | |
---|---|---|
Ball Bearing (BB) | Roller Bearing (RB) | |
1 | Normal/Healthy | Normal/Healthy |
2 | Ball defect | Combined defects |
3 | Cage defect | Inner race defect |
4 | Inner race defect | Outer race defect |
5 | Outer race defect | Roller defect |
Training | Testing | Prediction Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Speed (rpm) | Load (KN) | Speed (rpm) | Load (KN) | CNN + Order Maps (Proposed) | CNN + Spectrograms [38,39,40] | KNN + GA [12] | ANN | SVM | KNN + Order Maps |
1000 | 5 | 1000 | 5 | 100 | 100 | 98.3 | 99.2 | 99.6 | 98.3 |
1000 | 10 | 100 | 100 | 87.9 | 89.1 | 88.2 | 98 | ||
1000 | 15 | 100 | 100 | 88.8 | 90.4 | 90.2 | 97.9 | ||
2000 | 5 | 99.8 | 67.2 | 71.5 | 56.3 | 64.8 | 95.4 | ||
2000 | 10 | 97.4 | 58.5 | 51.5 | 49 | 63.5 | 91.3 | ||
2000 | 15 | 98.1 | 62.4 | 46.9 | 43.1 | 58.1 | 93.1 | ||
3000 | 5 | 98.4 | 63.3 | 65.6 | 40.6 | 64.2 | 92.7 | ||
3000 | 10 | 96 | 46 | 65.2 | 37.3 | 65.2 | 89.7 | ||
3000 | 15 | 96.7 | 59.1 | 59.8 | 35.4 | 58.3 | 91.4 | ||
1000 | 10 | 1000 | 5 | 100 | 100 | 81 | 80.1 | 80.2 | 97.5 |
1000 | 10 | 100 | 100 | 98.8 | 94 | 99.8 | 98.8 | ||
1000 | 15 | 100 | 100 | 84 | 80.8 | 82.5 | 98.2 | ||
2000 | 5 | 97 | 58 | 62.1 | 67.7 | 56.3 | 92.5 | ||
2000 | 10 | 98.1 | 75.7 | 66.7 | 66.7 | 65.2 | 93 | ||
2000 | 15 | 97.4 | 48.6 | 58.1 | 62.5 | 43.1 | 90.4 | ||
3000 | 5 | 95.3 | 64.6 | 60.2 | 68.6 | 66.5 | 87.3 | ||
3000 | 10 | 96.2 | 72.1 | 61.1 | 67.1 | 56.5 | 90.7 | ||
3000 | 15 | 96.5 | 57.3 | 52.3 | 65.6 | 42.7 | 88.5 | ||
1000 | 15 | 1000 | 5 | 100 | 100 | 90.21 | 89.8 | 91.5 | 97.5 |
1000 | 10 | 100 | 99.3 | 91.7 | 89.4 | 91.3 | 97 | ||
1000 | 15 | 100 | 100 | 97.5 | 96.9 | 99.4 | 98.2 | ||
2000 | 5 | 97.1 | 46.1 | 63.1 | 43.1 | 60.6 | 91.3 | ||
2000 | 10 | 98.4 | 57.7 | 66.04 | 59.6 | 64.2 | 92 | ||
2000 | 15 | 98.8 | 78.1 | 48 | 36.5 | 39 | 90.7 | ||
3000 | 5 | 97.2 | 57.5 | 64.6 | 51.5 | 51.5 | 89.6 | ||
3000 | 10 | 96.9 | 51 | 57.1 | 52.7 | 52.7 | 84.6 | ||
3000 | 15 | 99 | 62.2 | 43.96 | 37.7 | 39.2 | 85 | ||
2000 | 5 | 1000 | 5 | 98.1 | 62.8 | 45.8 | 49 | 53.8 | 88.3 |
1000 | 10 | 96.8 | 56.4 | 51.5 | 35.8 | 42.3 | 91.8 | ||
1000 | 15 | 97.1 | 48.6 | 50.6 | 39.4 | 49.8 | 88.1 | ||
2000 | 5 | 100 | 100 | 97.1 | 98.3 | 99.6 | 99.6 | ||
2000 | 10 | 100 | 100 | 84.5 | 86.4 | 85.1 | 99.2 | ||
2000 | 15 | 99.4 | 99.3 | 86.87 | 87.1 | 87.8 | 98.8 | ||
3000 | 5 | 99.4 | 74 | 72.3 | 73.6 | 72 | 97.6 | ||
3000 | 10 | 98.1 | 70 | 65.6 | 65.6 | 66.9 | 95.7 | ||
3000 | 15 | 97.6 | 70 | 68.3 | 66.7 | 68 | 96.3 | ||
2000 | 10 | 1000 | 5 | 97.4 | 67 | 43.1 | 31.4 | 32.7 | 86 |
1000 | 10 | 98.6 | 69.27 | 45 | 39 | 31.9 | 94.6 | ||
1000 | 15 | 98.1 | 51.7 | 42.3 | 36.2 | 30 | 83.9 | ||
2000 | 5 | 100 | 98.2 | 83.2 | 81.2 | 80.3 | 93.4 | ||
2000 | 10 | 100 | 100 | 99.6 | 100 | 100 | 100 | ||
2000 | 15 | 99.6 | 98.4 | 86 | 88.3 | 87.5 | 98.1 | ||
3000 | 5 | 99 | 66.74 | 70 | 71.3 | 74.3 | 94.6 | ||
3000 | 10 | 99.2 | 72.6 | 68.5 | 71.9 | 69 | 85.7 | ||
3000 | 15 | 98 | 70.8 | 69.4 | 70.1 | 68.9 | 88.8 | ||
2000 | 15 | 1000 | 5 | 97.3 | 73.4 | 51.3 | 51.2 | 45.6 | 81.2 |
1000 | 10 | 96.8 | 73.4 | 47.3 | 45.1 | 43.8 | 82.5 | ||
1000 | 15 | 99.1 | 77.5 | 53.3 | 49.5 | 43 | 83.2 | ||
2000 | 5 | 99.3 | 98.4 | 87.9 | 84 | 82 | 95.8 | ||
2000 | 10 | 99.3 | 99.3 | 90.62 | 85.8 | 81 | 96.4 | ||
2000 | 15 | 100 | 100 | 98.5 | 99.2 | 99.8 | 100 | ||
3000 | 5 | 94.7 | 46.7 | 71.3 | 64.2 | 77.1 | 86.3 | ||
3000 | 10 | 97 | 49.8 | 61.3 | 64.2 | 71.5 | 90.3 | ||
3000 | 15 | 98.1 | 53.9 | 73.2 | 79.2 | 79.8 | 85.7 | ||
3000 | 5 | 1000 | 5 | 98.4 | 63.57 | 41.3 | 24.2 | 27.1 | 89.3 |
1000 | 10 | 95.4 | 55.3 | 45.8 | 40.8 | 31 | 89.6 | ||
1000 | 15 | 97.2 | 55.4 | 36.3 | 37.3 | 25.4 | 85.4 | ||
2000 | 5 | 98.9 | 74 | 71.2 | 74.8 | 58.3 | 84.2 | ||
2000 | 10 | 98.1 | 68.85 | 66.7 | 67.9 | 77.3 | 97.6 | ||
2000 | 15 | 95.5 | 46.25 | 71.7 | 75.4 | 75.8 | 91.3 | ||
3000 | 5 | 100 | 100 | 99 | 99 | 99.8 | 100 | ||
3000 | 10 | 99.8 | 100 | 87.3 | 87.4 | 86.2 | 99.3 | ||
3000 | 15 | 100 | 100 | 88.2 | 87.8 | 87.3 | 99.6 | ||
3000 | 10 | 1000 | 5 | 96.1 | 57.83 | 26.2 | 19.4 | 14 | 85.7 |
1000 | 10 | 97.3 | 50 | 35.8 | 12.3 | 10.6 | 82.1 | ||
1000 | 15 | 95 | 28.5 | 23.5 | 16 | 11.25 | 86.1 | ||
2000 | 5 | 98.5 | 69.1 | 60.8 | 56.9 | 53.3 | 87.6 | ||
2000 | 10 | 99.1 | 72.3 | 62.7 | 67.8 | 66 | 96.9 | ||
2000 | 15 | 97.1 | 51.6 | 61.5 | 66.5 | 58.3 | 85.5 | ||
3000 | 5 | 99.6 | 98.2 | 85.6 | 82.9 | 83.8 | 99.3 | ||
3000 | 10 | 100 | 100 | 94.6 | 92.5 | 99.4 | 100 | ||
3000 | 15 | 100 | 99.6 | 84.4 | 89 | 85.6 | 100 | ||
3000 | 15 | 1000 | 5 | 97.1 | 38.8 | 22.5 | 27.3 | 30.4 | 83 |
1000 | 10 | 96.9 | 38.9 | 35.8 | 33.5 | 33.1 | 81.1 | ||
1000 | 15 | 99.1 | 48.9 | 29.4 | 31.7 | 29.8 | 84.3 | ||
2000 | 5 | 97.6 | 73.2 | 66.9 | 65 | 63.5 | 89.2 | ||
2000 | 10 | 98.9 | 72.8 | 73.1 | 77.3 | 78.7 | 98.5 | ||
2000 | 15 | 98.9 | 75.8 | 74 | 75.6 | 75.4 | 85.3 | ||
3000 | 5 | 99.2 | 100 | 90.6 | 89.5 | 82.8 | 99.8 | ||
3000 | 10 | 100 | 100 | 83.6 | 84.7 | 86.3 | 100 | ||
3000 | 15 | 100 | 100 | 94.2 | 95.8 | 99.4 | 100 | ||
Overall Average Prediction Accuracy | 98.4 | 73.7 | 67.4 | 64.7 | 65.3 | 92.3 |
Training | Testing | Prediction Accuracy (%) | |
---|---|---|---|
Ball Bearing | Cylindrical Roller Bearing | ||
3170 rpm (Constant Speed) | 3170 rpm (Constant speed) | 100 | 100 |
4955 rpm (Constant speed) | 100 | 99.9 | |
1000–2000 rpm (acceleration) | 99.1 | 97.2 | |
3525–4125 rpm (acceleration) | 99.4 | 96.8 | |
4050–2560 rpm (deceleration) | 99.1 | 96.2 | |
1000–2000 rpm (acceleration) | 3170 rpm (Constant speed) | 98.7 | 99.1 |
4955 rpm (Constant speed) | 98.5 | 98.1 | |
1000–2000 rpm (acceleration) | 100 | 100 | |
3525–4125 rpm (acceleration) | 99.4 | 97.3 | |
4050–2560 rpm (deceleration) | 98 | 95.1 | |
Average Prediction accuracy for each bearing | 99.2 | 98 | |
Overall average Prediction accuracy | 98.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyab, S.M.; Chatterton, S.; Pennacchi, P. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps. Sensors 2022, 22, 2026. https://doi.org/10.3390/s22052026
Tayyab SM, Chatterton S, Pennacchi P. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps. Sensors. 2022; 22(5):2026. https://doi.org/10.3390/s22052026
Chicago/Turabian StyleTayyab, Syed Muhammad, Steven Chatterton, and Paolo Pennacchi. 2022. "Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps" Sensors 22, no. 5: 2026. https://doi.org/10.3390/s22052026
APA StyleTayyab, S. M., Chatterton, S., & Pennacchi, P. (2022). Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps. Sensors, 22(5), 2026. https://doi.org/10.3390/s22052026