An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial Diseases from Delayed-Enhancement MRI with Inclusion and Classification Prior Information U-Net (ICPIU-Net)
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Study Subjects and Data Acquisition
3.2. Pre-Processing
3.3. Architecture of ICPIU-Net
3.3.1. Anatomical Network
3.3.2. Pathological Network
3D U-Net Architecture
Network Implementation
Shape Reconstruction
Class Constraint
3.4. Post-Processing
4. Results and Discussion
4.1. Evaluation Metrics
4.2. Results Analysis and Extensive Discussions
5. Conclusions
6. Code Availability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, A.; Matthews, G.; Brown, I.; Shambrook, J.; Peebles, C.; Harden, S. Cardiac MR assessment of microvascular obstruction. Br. J. Radiol. Suppl. 2015, 88, 20140470. [Google Scholar] [CrossRef]
- Arevalo, H.J.; Vadakkumpadan, F.; Guallar, E.; Jebb, A.; Malamas, P.; Wu, K.C.; Trayanova, N.A. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Trayanova, N.A.; Pashakhanloo, F.; Wu, K.C.; Halperin, H.R. Imaging-based simulations for predicting sudden death and guiding ventricular tachycardia ablation. Circ. Arrhythm. Electrophysiol. 2017, 10, e004743. [Google Scholar] [CrossRef]
- Kawaji, K.; Tanaka, A.; Patel, M.B.; Wang, H.; Maffessanti, F.; Ota, T.; Patel, A.R. 3D late gadolinium enhanced cardiovascular MR with CENTRA-PLUS profile/view ordering: Feasibility of right ventricular myocardial damage assessment using a swine animal model. Magn. Reson. Imaging 2017, 39, 7–14. [Google Scholar] [CrossRef]
- Rajchl, M.; Stirrat, J.; Goubran, M.; Yu, J.; Scholl, D.; Peters, T.M.; White, J.A. Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging. Int. J. Card. Imaging 2015, 31, 349–357. [Google Scholar] [CrossRef]
- Ukwatta, E.; Arevalo, H.; Li, K.; Yuan, J.; Qiu, W.; Malamas, P.; Wu, K.C.; Trayanova, N.A.; Vadakkumpadan, F. Myocardial infarct segmentation from magnetic resonance images for personalized modeling of cardiac electrophysiology. IEEE Trans. Med. Imaging 2015, 35, 1408–1419. [Google Scholar] [CrossRef] [Green Version]
- Usta, F.; Gueaieb, W.; White, J.A.; McKeen, C.; Ukwatta, E. Comparison of myocardial scar geometries from 2D and 3D LGE-MRI. In Proceedings of the Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, Houston, TX, USA, 11–13 February 2018. [Google Scholar]
- Zabihollahy, F.; White, J.A.; Ukwatta, E. Myocardial scar segmentation from magnetic resonance images using convolutional neural network. In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 10–15 February 2018. [Google Scholar]
- Carminati, M.C.; Boniotti, C.; Fusini, L.; Andreini, D.; Pontone, G.; Pepi, M.; Caiani, E.G. Comparison of image processing techniques for nonviable tissue quantification in late gadolinium enhancement cardiac magnetic resonance images. J. Thorac. Imaging 2016, 31, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Moccia, S.; Banali, R.; Martini, C.; Muscogiuri, G.; Pontone, G.; Pepi, M.; Caiani, E.G. Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Xu, L.; Gao, Z.; Zhao, S.; Zhang, H.; Zhang, Y.; Du, X.; Zhao, S.; Ghista, D.; Liu, H.; et al. Direct delineation of myocardial infarction without contrast agents using a joint motion feature learning architecture. Med. Image Anal. 2018, 50, 82–94. [Google Scholar] [CrossRef]
- de la Rosa, E.; Sidibé, D.; Decourselle, T.; Leclercq, T.; Cochet, A.; Lalande, A. Myocardial infarction quantification from late gadolinium enhancement mri using top-hat transforms and neural networks. arXiv 2019, arXiv:1901.02911. [Google Scholar] [CrossRef]
- Hao, P.; Gao, X.; Li, Z.; Zhang, J.; Wu, F.; Bai, C. Multi-branch fusion network for Myocardial infarction screening from 12-lead ECG images. Comput. Methods Programs Biomed. 2020, 184, 105286. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D vision (3DV), Stanford, CA, USA, 5–28 October 2016; pp. 565–571. [Google Scholar]
- Tao, Q.; Yan, W.; Wang, Y.; Paiman, E.H.; Shamonin, D.P.; Garg, P.; Plein, S.; Huang, L.; Xia, L.; Sramko, M.; et al. Deep learning–based method for fully automatic quantification of left ventricle function from cine MR images: A multivendor, multicenter study. Radiology 2019, 290, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Yao, Y.; Hu, Z.; Hao, A. Automatic 3D atrial segmentation from GE-MRIs using volumetric fully convolutional networks. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Granada, Spain, 16 September 2018; pp. 211–220. [Google Scholar]
- Vigneault, D.M.; Xie, W.; Ho, C.Y.; Bluemke, D.A.; Noble, J.A. Ω-net (omega-net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 2018, 48, 95–106. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Fatemeh, Z.; Nicola, S.; Satheesh, K.; Eranga, U. Ensemble U-net-based method for fully automated detection and segmentation of renal masses on computed tomography images. J. Med. Phys. 2020, 47, 4032–4044. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; An, X.; Ge, C.; Yu, Z.; Chen, J.; Zhu, Q.; Dong, G.; He, J.; He, Z.; et al. Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation. J. Med. Phys. 2021, 48, 1197–1210. [Google Scholar] [CrossRef]
- Fahmy, A.S.; Rausch, J.; Neisius, U.; Chan, R.H.; Maron, M.S.; Appelbaum, E.; Menze, B.; Nezafat, R. Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc. Imaging 2018, 11, 1917–1918. [Google Scholar] [CrossRef]
- Zabihollahy, F.; Rajchl, M.; White, J.A.; Ukwatta, E. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net). J. Med. Phys. 2020, 47, 1645–1655. [Google Scholar] [CrossRef]
- Arega, T.W.; Bricq, S.; Meriaudeau, F. Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR. In Proceedings of the MICCAI UNSURE Workshop 2021, Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, London, UK, 1 October 2021. [Google Scholar]
- El Jurdi, R.; Petitjean, C.; Honeine, P.; Cheplygina, V.; Abdallah, F. High-level prior-based loss functions for medical image segmentation: A survey. Comput. Vis. Image Underst. 2021, 210, 103248. [Google Scholar] [CrossRef]
- Taghanaki, S.A.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and medical images: A review. Artif. Intell. Rev. 2021, 54, 137–178. [Google Scholar] [CrossRef]
- Oktay, O.; Bai, W.; Lee, M.; Guerrero, R.; Kamnitsas, K.; Caballero, J.; de Marvao, A.; Cook, S.; O’Regan, D.; Rueckert, D. Multi-input cardiac image super-resolution using convolutional neural networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 246–254. [Google Scholar]
- Schlemper, J.; Oktay, O.; Bai, W.; Castro, D.C.; Duan, J.; Qin, C.; Hajnal, J.V.; Rueckert, D. Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 259–267. [Google Scholar]
- Yue, Q.; Luo, X.; Ye, Q.; Xu, L.; Zhuang, X. Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 559–567. [Google Scholar]
- Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.A.; De Marvao, A.; Dawes, T.; O‘Regan, D.P.; et al. Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 2017, 37, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Zotti, C.; Luo, Z.; Lalande, A.; Jodoin, P.M. Convolutional neural network with shape prior applied to cardiac MRI segmentation. IEEE J. Biomed. Health Inform. 2018, 23, 1119–1128. [Google Scholar] [CrossRef]
- El Jurdi, R.; Petitjean, C.; Honeine, P.; Abdallah, F. Bb-unet: U-net with bounding box prior. IEEE J. Sel. Top. Signal Process. 2020, 14, 1189–1198. [Google Scholar]
- Duan, J.; Bello, G.; Schlemper, J.; Bai, W.; Dawes, T.J.; Biffi, C.; de Marvao, A.; Doumoud, G.; O’Regan, D.P.; Rueckert, D. Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging 2019, 38, 2151–2164. [Google Scholar] [CrossRef]
- Du, X.; Yin, S.; Tang, R.; Zhang, Y.; Li, S. Cardiac-DeepIED: Automatic pixel-level deep segmentation for cardiac bi-ventricle using improved end-to-end encoder-decoder network. IEEE J. Transl. Eng. Health Med. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Y.; Li, Z.; Van Der Geest, R.J.; Tao, Q. Left ventricle segmentation via optical-flow-net from short-axis cine MRI: Preserving the temporal coherence of cardiac motion. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 613–621. [Google Scholar]
- Savioli, N.; Vieira, M.S.; Lamata, P.; Montana, G. Automated segmentation on the entire cardiac cycle using a deep learning work-flow. In Proceedings of the 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), Valencia, Spain, 15–18 October 2018; pp. 153–158. [Google Scholar]
- Qin, C.; Bai, W.; Schlemper, J.; Petersen, S.E.; Piechnik, S.K.; Neubauer, S.; Rueckert, D. Joint learning of motion estimation and segmentation for cardiac MR image sequences. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 472–480. [Google Scholar]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. Automatic segmentation and disease classification using cardiac cine MR images. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Quebec City, QC, Canada, 10–14 September 2017; pp. 101–110. [Google Scholar]
- Clough, J.R.; Oksuz, I.; Byrne, N.; Schnabel, J.A.; King, A.P. Explicit topological priors for deep-learning based image segmentation using persistent homology. In Proceedings of the International Conference on Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 16–28. [Google Scholar]
- Camarasa, R.; Faure, A.; Crozier, T.; Bos, D.; de Bruijne, M. Uncertainty-Based Segmentation of Myocardial Infarction Areas on Cardiac MR Images. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 385–391. [Google Scholar]
- Feng, X.; Kramer, C.M.; Salerno, M.; Meyer, C.H. Automatic Scar Segmentation from DE-MRI Using 2D Dilated UNet with Rotation-Based Augmentation. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 400–405. [Google Scholar]
- Girum, K.B.; Skandarani, Y.; Hussain, R.; Grayeli, A.B.; Créhange, G.; Lalande, A. Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 378–384. [Google Scholar]
- Huellebrand, M.; Ivantsits, M.; Zhang, H.; Kohlmann, P.; Kuhnigk, J.M.; Kuehne, T.; Schönberg, S.; Hennemuth, A. Comparison of a Hybrid Mixture Model and a CNN for the Segmentation of Myocardial Pathologies in Delayed Enhancement MRI. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 319–327. [Google Scholar]
- Hennemuth, A.; Friman, O.; Huellebrand, M.; Peitgen, H.O. Mixture-model-based segmentation of myocardial delayed enhancement MRI. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Nice, France, 5 October 2012; pp. 87–96. [Google Scholar]
- Yang, S.; Wang, X. A Hybrid Network for Automatic Myocardial Infarction Segmentation in Delayed Enhancement-MRI. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 351–358. [Google Scholar]
- Zhang, Y. Cascaded Convolutional Neural Network for Automatic Myocardial Infarction Segmentation from Delayed-Enhancement Cardiac MRI. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 328–333. [Google Scholar]
- Zhou, Y.; Zhang, K.; Luo, X.; Wang, S.; Zhuang, X. Anatomy Prior Based U-net for Pathology Segmentation with Attention. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 392–399. [Google Scholar]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Lalande, A.; Chen, Z.; Decourselle, T.; Qayyum, A.; Pommier, T.; Lorgis, L.; de la Rosa, E.; Cochet, A.; Cottin, Y.; Ginhac, D.; et al. Emidec: A database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. Data 2020, 5, 89. [Google Scholar] [CrossRef]
- Qayyum, A.; Lalande, A.; Meriaudeau, F. Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging. Comput. Biol. Med. 2020, 127, 104097. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. J. Geom. Graph. 1994, IV, 474–485. [Google Scholar]
- Xie, W.Q.; Zhang, X.P.; Yang, X.M.; Liu, Q.S.; Tang, S.H.; Tu, X.B. 3D size and shape characterization of natural sand particles using 2D image analysis. Eng. Geol. 2020, 279, 105915. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Kervadec, H.; Bouchtiba, J.; Desrosiers, C.; Granger, E.; Dolz, J.; Ayed, I.B. Boundary loss for highly unbalanced segmentation. In Proceedings of the International Conference on Medical Imaging with Deep Learning, London, UK, 8–10 July 2019; pp. 285–296. [Google Scholar]
- Yuan, Y.; Chao, M.; Lo, Y.C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [Google Scholar] [CrossRef]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding bland altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Brahim, K.; Qayyum, A.; Lalande, A.; Boucher, A.; Sakly, A.; Meriaudeau, F. A 3D Network Based Shape Prior for Automatic Myocardial Disease Segmentation in Delayed-Enhancement MRI. IRBM 2021, 42, 424–434. [Google Scholar] [CrossRef]
- Lalande, A.; Chen, Z.; Pommier, T.; Decourselle, T.; Qayyum, A.; Salomon, M.; Ginhac, D.; Skandarani, Y.; Boucher, A.; Brahim, K.; et al. Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge. arXiv 2021, arXiv:2108.04016. [Google Scholar]
- Lourenço, A.; Kerfoot, E.; Grigorescu, I.; Scannell, C.M.; Varela, M.; Correia, T.M. Automatic myocardial disease prediction from delayed-enhancement cardiac mri and clinical information. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 334–341. [Google Scholar]
- Ivantsits, M.; Huellebrand, M.; Kelle, S.; Schönberg, S.O.; Kuehne, T.; Hennemuth, A. Deep-learning-based myocardial pathology detection. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 369–377. [Google Scholar]
- Sharma, R.; Eick, C.F.; Tsekos, N.V. SM2N2: A Stacked Architecture for Multimodal Data and Its Application to Myocardial Infarction Detection. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 342–350. [Google Scholar]
- Shi, J.; Chen, Z.; Couturier, R. Classification of Pathological Cases of Myocardial Infarction Using Convolutional Neural Network and Random Forest. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2020; pp. 406–413. [Google Scholar]
EMIDEC Dataset (n = 150) | Healthy Cases | Pathological Cases | |
---|---|---|---|
Infarcted Cases | Infarcted + MVO (a Subclass of MI) Cases | ||
Training dataset (n = 100) | 33 | 27 | 40 |
Testing dataset (n = 50) | 17 | 22 | 11 |
Targets | Metrics | 5-Fold Cross-Validation | ||||||
---|---|---|---|---|---|---|---|---|
Fold 0 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Average | Standard Deviation | ||
Myocardium | DSC (%) | 95.38 | 95.07 | 95.21 | 95.35 | 95.59 | 95.32 | 0.17 |
AVD (mm) | 232.74 | 290.61 | 225.42 | 229.14 | 203.49 | 236.28 | 29.01 | |
HD (mm) | 4.02 | 4.78 | 3.87 | 3.61 | 3.46 | 3.95 | 0.44 | |
MI | DSC (%) | 77.05 | 79.45 | 78.73 | 78.92 | 77.34 | 78.30 | 0.75 |
AVD (mm) | 283.31 | 267.26 | 190.34 | 156.53 | 271.25 | 233.74 | 50.65 | |
AVDR (%) | 4.01 | 4.20 | 3.18 | 2.03 | 4.53 | 3.39 | 0.77 | |
MVO | DSC (%) | 76.54 | 79.15 | 79.92 | 75.51 | 78.03 | 77.83 | 1.62 |
AVD (mm) | 34.18 | 26.80 | 45.10 | 49.19 | 46.68 | 40.39 | 8.51 | |
AVDR (%) | 0.62 | 0.61 | 0.69 | 0.74 | 0.76 | 0.68 | 0.10 |
Targets | Metrics | Methods | ||
---|---|---|---|---|
Huellebrand et al. [44] | Zhang [47] | Proposed (ICPIU-Net) | ||
Myocardium | DSC (%) | 81.00 | 94.40 | 95.32 |
AVD (mm) | 13655.55 | 6474.38 | 236.28 | |
HD (mm) | 16.72 | 17.21 | 3.95 | |
MI | DSC (%) | 36.08 | 72.08 | 78.30 |
AVD (mm) | 8980.5 | 4179.5 | 233.74 | |
AVDR (%) | 7.07 | 3.41 | 3.39 | |
MVO | DSC (%) | 54.15 | 71.01 | 77.83 |
AVD (mm) | 1501.73 | 918.69 | 40.39 | |
AVDR (%) | 1.08 | 0.69 | 0.68 |
Methods | Structures | ||||||||
---|---|---|---|---|---|---|---|---|---|
Myocardium | MI | MVO | |||||||
DSC (%) | AVD (mm) | HD (mm) | DSC (%) | AVD (mm) | AVDR (%) | DSC (%) | AVD (mm) | AVDR (%) | |
Feng et al. [42] | 83.56 | 15,187.48 | 33.77 | 54.68 | 3970.73 | 2.89 | 72.22 | 883.42 | 0.53 |
Huellebrand et al. [44] | 84.08 | 10,874.47 | 18.3 | 37.87 | 6166.01 | 4.93 | 52.25 | 953.47 | 0.64 |
Yang et al. [46] | 85.53 | 16,539.52 | 13.23 | 62.79 | 5343.69 | 4.37 | 60.99 | 1851.52 | 1.69 |
Zhang [47] | 87.86 | 9258.24 | 13.01 | 71.24 | 3117.88 | 2.38 | 78.51 | 634.69 | 0.38 |
Camarasa et al. [41] | 75.74 | 17,108.13 | 25.44 | 30.79 | 4868.56 | 3.64 | 60.52 | 867.86 | 0.52 |
Zhou et al. [48] | 82.46 | 13,292.68 | 83.42 | 37.77 | 6104.99 | 4.71 | 51.98 | 879.99 | 0.54 |
Girum et al. [43] | 80.26 | 11,807.68 | 51.48 | 34.00 | 11,521.71 | 8.58 | 78.00 | 891.13 | 0.51 |
Proposed (ICPIU-Net) | 87.65 | 8863.41 | 13.10 | 73.36 | 2693.84 | 1.95 | 81.31 | 511.25 | 0.32 |
Methods | Structures | ||||||||
---|---|---|---|---|---|---|---|---|---|
Myocardium | MI | MVO | |||||||
DSC (%) | AVD (mm) | HD (mm) | DSC (%) | AVD (mm) | AVDR (%) | DSC (%) | AVD (mm) | AVDR (%) | |
Without IC and CC | 87.77 | 9381.77 | 13.07 | 65.05 | 3096.54 | 2.39 | 78.82 | 553.56 | 0.34 |
Without CC | 87.74 | 9201.04 | 13.09 | 71.71 | 2830.32 | 2.15 | 80.99 | 538.60 | 0.34 |
Proposed (ICPIU-Net) | 87.65 | 8863.41 | 13.10 | 73.36 | 2693.84 | 1.95 | 81.31 | 511.25 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahim, K.; Arega, T.W.; Boucher, A.; Bricq, S.; Sakly, A.; Meriaudeau, F. An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial Diseases from Delayed-Enhancement MRI with Inclusion and Classification Prior Information U-Net (ICPIU-Net). Sensors 2022, 22, 2084. https://doi.org/10.3390/s22062084
Brahim K, Arega TW, Boucher A, Bricq S, Sakly A, Meriaudeau F. An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial Diseases from Delayed-Enhancement MRI with Inclusion and Classification Prior Information U-Net (ICPIU-Net). Sensors. 2022; 22(6):2084. https://doi.org/10.3390/s22062084
Chicago/Turabian StyleBrahim, Khawla, Tewodros Weldebirhan Arega, Arnaud Boucher, Stephanie Bricq, Anis Sakly, and Fabrice Meriaudeau. 2022. "An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial Diseases from Delayed-Enhancement MRI with Inclusion and Classification Prior Information U-Net (ICPIU-Net)" Sensors 22, no. 6: 2084. https://doi.org/10.3390/s22062084
APA StyleBrahim, K., Arega, T. W., Boucher, A., Bricq, S., Sakly, A., & Meriaudeau, F. (2022). An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial Diseases from Delayed-Enhancement MRI with Inclusion and Classification Prior Information U-Net (ICPIU-Net). Sensors, 22(6), 2084. https://doi.org/10.3390/s22062084